• 제목/요약/키워드: Flow Distribution

검색결과 5,452건 처리시간 0.034초

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석 (Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series)

  • 김병식;강경석;서병하
    • 한국수자원학회논문집
    • /
    • 제32권3호
    • /
    • pp.265-279
    • /
    • 1999
  • 본 연구에서는, Markov 연쇄 모형에 의해 산정된 모의 일 강우량을 일 유출모형인 Tand 모형에 입력시켜 모의 일유출량을 산정함으로써 저수유량계열을 확장하는 방법을 개발하였다. 또한, 모의된 일 유량계열로부터 지속기간별 연 최저치 계열을 작성하였으며, 지속기간별 연 최저치계열에 대한 빈도분석을 시행하였다. 분석에 사용된 분포형은 Lognormal-2, Lognormal-3, Gamma-2, Gamma-3, LogGamma-3, Gumbel-2, Weibull-2 분포이었으며, 모수추정은 모멘트법과 최우도법을 사용하였다. Kolmogorov - Sminorv 검정방법으로 지속기간별 연 최저치 계열에 적합한 확률분포형을 결정하고, 용담댐 지점을 대상으로 하여 지속기간별 갈수 빈도곡선을 산정하였다. 본 연구에서 제안된 방법을 적용하면 과거 저수 유량계열의 통계적 특성을 잘 나타내는 일 유량의 모의가 가능 하여, 갈수유량계열 자료가 빈곤한 유역에서 확률 갈수량을 추정하는데 유용하리라고 판단된다.

  • PDF

고분자 전해질 연료전지를 위한 연료주입구 설계 및 수치해석 (Design of Inlet Manifold for PEM Fuel Cells and Numerical Analysis)

  • 엄승배;나태경;김홍석;백정식;성동묵;김태민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.172-175
    • /
    • 2007
  • The Performance of a PEMFC stack is strongly dependent on the uniform reactants distribution on MEA. The uniform distribution can be achieved by flow-field pattern and manifold design optimized to satisfy operating conditions. This paper investigates uniform reactants distribution in channels by changing manifold shape and inlet mass flow rate. Typical U and Z shape and modified U and Z shape manifolds with buffer zone were designed. To check the uniform reactants distribution, standard deviation of mass flow rate was compared. The numerical results show that the inlet mass flow rate, inlet shape, and manifolds shape are critical factor for uniform distribution.

  • PDF

경사 분배관에 의한 다지관내의 유속분포에 대한 실험적 연구 (Experimental study on flow distribution in manifolds by a tapered header)

  • 윤영환;이상헌
    • 설비공학논문집
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 1998
  • A header is the device that makes uniform flow distribution in all branches from header of heat exchangers, pipe burner or chemical equipments. In this study, experimental tests have been performed in order to investigate the flow distribution characteristics in a straight header and tapered header which have 6 and 11 glass pipe branches. The experimental equipment consists of a water circulation system where the fluid velocity in each glass pipe is measured by Ar-ion LDV system. From the experiments and the theoretical equation, it could be recommended that tapered header should be determined so that its internal velocities inside the header become uniform according to taper of the header and number of attached branches for uniform flow distribution in energy systems.

  • PDF

수정된 등압법을 이용한 매니폴드의 유량분배 (Flow Distribution in Manifold Using Modified Equal Pressure Method)

  • 예휘열;김두환;이관수;차우호
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.176-185
    • /
    • 2009
  • A general flow distribution model and a simple process of numerical analysis, which can be applied to multi-pass systems with manifolds, are presented. A numerical procedure, namely a modified equal pressure method based on the discrete model, was developed to predict flow rates at branch tubes. The predicted pressure distribution agreed well with the previous research with the average error less than 11%. A parametric study was performed to demonstrate the effect on the flow distribution.

이중 수로 구조의 분배수로 내 다지점 유출 유량의 균등성 평가에 관한 연구 (Examining the Equality of Multi-Outlet Flow Rates within a Dual Open Channel)

  • 김성수;박노석;정우창;왕창근
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.423-430
    • /
    • 2012
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic S_ water treatment plant, and to suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results tracer tests were carried out. From the results of CFD simulation and tracer tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution over 75%.

Influence of fracture characters on flow distribution under different Reynold numbers

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Gao, Cheng-Lu
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.187-193
    • /
    • 2018
  • Water inrush through the destruction of water resisting rock mass structure was divided into direct water inrush, key block water inrush and splitting water inrush. In the direct water inrush, the Reynolds numbers has a significant effect on the distribution of the water flow and vortex occurred in the large Reynolds numbers. The permeability coefficient of the fracture is much larger than the rock, and the difference is between 104 and 107 times. The traditional theory and methods are not considering the effect of inertia force. In the position of the cross fracture, the distribution of water flow can only be linearly distributed according to the fracture opening degree. With the increase of Reynolds number, the relationship between water flow distribution and fracture opening is studied by Semtex.

인공신경망을 통한 2D 용질성 마랑고니 유동 액적의 용질 농도 분포 역추적 기법 (Reverse tracking method for concentration distribution of solutes around 2D droplet of solutal Marangoni flow with artificial neural network)

  • 김준규;류준일;김형수
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.32-40
    • /
    • 2021
  • Vapor-driven solutal Marangoni flow is governed by the concentration distribution of solutes on a liquid-gas interface. Typically, the flow structure is investigated by particle image velocimetry (PIV). However, to develop a theoretical model or to explain the working mechanism, the concentration distribution of solutes at the interface should be known. However, it is difficult to achieve the concentration profile theoretically and experimentally. In this paper, to find the concentration distribution of solutes around 2D droplet, the reverse tracking method with an artificial neural network based on PIV data was performed. Using the method, the concentration distribution of solutes around a 2D droplet was estimated for actual flow data from PIV experiment.

고제어 성능을 가진 버터플라이밸브의 개도각에 따른 유체유동에 대한 연구 (A Study on the Fluid Flow According to the Opening Angle of a Butterfly Valve with High Control Performance)

  • 유성훈;박상희;황정규;양희조
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.617-623
    • /
    • 2021
  • The objective of this study is to simulate valve flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. The size of the valve used in this study is 125A. The range of the valve opening angle was α=15°~70°, and it was changed by 5°. At the range of α=15°~30°, the valve flow coefficient K𝜐 gradually increased, and after α=30°, it increased rapidly. In the range of α=20°~70°, the pressure change in the -2.9cm~+2.9cm region in the pipe greatly depended on the opening angle and the position within the pipe. However, after +2.9cm, the pressure at the rear end of the valve was shown to depend only on the opening angle. At α=20°, Vortex shedding occurred for the first time at time t=0.25sec and continuously occurred in rear end of the valve over time. After α=45°, in the flow pattern at the rear end of the valve, the upward flow at the lower end of the valve and the flow at the upper end met each other to form a mixed flow. This flow phenomenon was shown to form a more intense mixed flow in the rear end region as the opening angle increased. Vortex flow occurred for the first time at α=15°, and the opening angle increased, the occurrence and disappearance of this flow phenomenon occurred periodically according to the certain flow region. The pattern of the pressure distribution in the region at the rear end of the valve showed a tendency to agree well with the results of the vorticity distribution.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.