• Title/Summary/Keyword: Flow Control Forming

Search Result 105, Processing Time 0.025 seconds

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreezing Solution (마이크로 부동액막을 이용한 착상방지에 관한 실험적 연구)

  • Chang Young- Soo;Yun Won -Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.459-467
    • /
    • 2005
  • The effect of anti freezing solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreezing solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation and reduce the thermal resistance across the film. A porous layer coating technique is adopted to improve the wettedness of the anti freezing solution on a parallel plate heat exchanger. The antifreezing solution spreads widely on the heat exchanger surface with 100 $\mu$m thickness by the capillary force resulting from the porous structure. It is observed that the antifreezing solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by thin liquid film are only $1\~2\%$ compared with those for non-liquid film surface.

Frost Prevention of Fin-Tube Heat Exchanger by Spreading Antifreezing Solution (부동액 도포에 의한 핀-튜브 열교환기 착상방지)

  • Oh, Sang-Youp;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.477-485
    • /
    • 2006
  • A study on frost prevention of fin-tube heat exchanger is experimently performed by spreading antifreezing solution on heat exchanger surface. It is desirable that the antifreezing solution spreads completely on the surface forming thin liquid film to prevent frost nucleation and crystal growth and to reduce the thermal resistance across the liquid film. A small amount of antifreezing solution falls in drops on heat exchanger surface using two types of supplying devices, and a porous layer coating technique is adopted to enhance the wettedness of antifreezing solution on the surface. It is observed that the antifreezing solution liquid film prevents fin-tube heat exchanger from frosting, and heat transfer performance does not degrade through the frosting tests. The concentration of supplied antifreezing solution can be determined by heat transfer analysis of the first row of heat exchanger to avoid antifreezing solution freezing due to dilution by moisture absorption.

Performance Evaluation of Chip Breaker Utilizing Neural Network (신경망기법에 의한 칩브레이커의 성능평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.64-74
    • /
    • 2007
  • The continuous chip in turning operation deteriorates precision of workpiece and causes a hazardous condition to operator. Thus the chip form control becomes a very important task for reliable machining process. So, grooved chip breaker is widely used to obtain reliable discontinuous chip. However, developing new cutting insert having chip breaker takes long time and needs lots of research expense due to a couple of processes such as forming, sintering, grinding and coating of product and many different evaluation tests. In this paper, performance of commercial chip breaker is evaluated with neural network which is learned with a back propagation algorithm. For the evaluation, several important elements(depth of cut, land, breadth, radius) which directly influence the chip formation were chosen among commercial chip breakers and were used as input values of neural network. With the results of these input values, the performance evaluation method was developed and applied that method to the commercial tools.

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Development of a New Approach to Determine the Potency of Bacille Calmette-Guérin Vaccines Using Flow Cytometry

  • Gweon, Eunjeong;Choi, Chanwoong;Kim, Jaeok;Kim, Byungkuk;Kang, Hyunkyung;Park, Taejun;Ban, Sangja;Bae, Minseok;Park, Sangjin;Jeong, Jayoung
    • Osong Public Health and Research Perspectives
    • /
    • v.8 no.6
    • /
    • pp.389-396
    • /
    • 2017
  • Objectives: To circumvent the limitations of the current golden standard method, colony-forming unit (CFU) assay, for viability of Bacille Calmette-$Gu{\acute{e}}rin$ (BCG) vaccines, we developed a new method to rapidly and accurately determine the potency of BCG vaccines. Methods: Based on flow cytometry (FACS) and fluorescein diacetate (FDA) as the most appropriate fluorescent staining reagent, 17 lots of BCG vaccines for percutaneous administration and 5 lots of BCG vaccines for intradermal administration were analyzed in this study. The percentage of viable cells measured by flow cytometry along with the total number of organisms in BCG vaccines, as determined on a cell counter, was used to quantify the number of viable cells. Results: Pearson correlation coefficients of FACS and CFU assays for percutaneous and intradermal BCG vaccines were 0.6962 and 0.7428, respectively, indicating a high correlation. The coefficient of variation value of the FACS assay was less than 7%, which was 11 times lower than that of the CFU assay. Conclusion: This study contributes to the evaluation of new potency test method for FACS-based determination of viable cells in BCG vaccines. Accordingly, quality control of BCG vaccines can be significantly improved.

A study on measuring friction vibration in flange area during deep drawing process (프레스 딥 드로잉 가공 시 플랜지부의 마찰진동 측정에 관한 기초연구)

  • Jae-Woong Yun
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.8-13
    • /
    • 2023
  • In this study, it was studied whether a new measurement factor "frictional vibration" that occurs due to the material flow of the die and sheet metal in the flange area during deep drawing process, could be measured using an vibration sensor. The blank holder force acting on the flange area during drawing processing acts as a friction force in the opposite direction into which the sheet material flows and causes friction vibration. As the blank holder force increases, the friction force increases, and as the blank holder force decreases, the friction force also decreases. Because of this, friction vibration also increases and decreases in proportion to the size of the blank holder force. According to this theory, whether frictional vibration occurs was measured using a flange simulator and a vibration sensor. The initial pressure was created using a torque wrench, and it was confirmed that the amplitude increased by about 4 times when torque 6 Nm was increased. When the forming velocity was rapidly changed to 300 mm/min, the amplitude increased approximately 4 times. It was confirmed that the amplitude of frictional vibration according to the measurement location was greater the further away from the specimen. It was verified that a new measurement factor "friction vibration" in the flange area can be measured and used for online monitoring.

Effects of Korean Traditional Medicine on Murine Hematopiesis (Regulation of Hematopoietic Cytokine & $CD34^{+}$ cell Expression) (수 종의 한약제제가 조혈작용에 미치는 영향)

  • 전재현;김영철;이장훈;우흥정
    • The Journal of Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.156-168
    • /
    • 2001
  • Objectives : To evaluate the diverse actions of stimulation on the hematopoietic system, 4 formulas (KH I, KH 2, KH 3, KH 4) were studied. Method and Result : RT-PCR was performed to measure the gene expression of hematopoietic cytokines (TPO, GM-CSF, SCF, IL-3). When bone marrow cells were treated with KH 1, 2, 3, 4, the gene expressions of TPO, SCF, IL-3, and GM-CSF were increased. Flow cytometric analysis was performed to measure the expression of CD34+ cell activity. After 72 hrs culture supplemented with KH 1, 2, 3, 4, the percent of CD34+ cell of KH 2, 3, 4 were increased. To measure the expression of colony forming units - granulocyte erythrocytes, macrophages, megakaryocytes (CFU-GEMM) and burst forming unit-erythroid (BFU-E), semisolid clonogenic assay was performed. After 14 days of culture the number of CFU-GEMM and BFU-E of KH I, 2, 3, 4 were significantly increased compared to those of EPO groups (KH 1 P<0.0l, KH 2 P<0.05, KH 3 P<0.001, KH 4 P<0.0l). To determine the intracelluar TPO expression by KH 3, KH 4 in bone marrow cells, intracelluar staining and flow cytometric analysis were performed. After 24 hrs cultures, the TPO expression of the KH 3 and KH 4 treated groups were increased over those of the controlled groups (control : 50%, KH 3 : 87%, KH 4 : 78%). Conclusion : These results suggest that KH I, KH 2, KH 3, KH 4 have hematopoietic effects through increasing the production of hematopoietic cytokines and stimulating the activity of $CD34^{+}$ cells. This study also shows that KH 3 has a more effective hematopoietic effect than KH 1, 2, 4. These results suggest that the formulas (KH I, 2, 3, 4) can be applied to the patients with inappropriate hematopoietic system, and that KH 3 can be the most effective formula among these 4 in treating bone marrow disease in clinics.

  • PDF

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.410-420
    • /
    • 2016
  • The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper (Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증)

  • Kim, Y.H.;Woo, M.A.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.