• Title/Summary/Keyword: Flow Condensation

Search Result 396, Processing Time 0.024 seconds

수조내 증기제트 응축현상 제고찰 (Review of Steam Jet Condensation in a Water Pool)

  • 김연식;송철화;박춘경
    • 에너지공학
    • /
    • 제12권2호
    • /
    • pp.74-83
    • /
    • 2003
  • APR1400과 같은 차세대 원자력발전소에서는 원자로 안전성을 증진시키기 위하여 SDVS와 같은 계통을 도입하고 있다. 완전급수상실사고와 같은 경우는 POSRV가 개방되어 수조내 Sparger를 통하여 증기가 방출·응축되게 된다 증기가 응축함에 있어서 설계에서 고려해야 될 사항은 하중과 수조 혼합이며 증기제트 응축의 물리적 현상 이해를 통하여 적절한 대처를 마련할 수 있다. 수조내 Sparger를 통하여 분사되는 증기 응축에 대하여 하중과 수조 혼합 검토에 도움이 될 수 있도록 증기제트 응축의 물리적 현상 이해에 대한 검토와 평가를 수행하였다.

Bleed Slot을 사용한 응축충격파의 피동제어 (Passive Control of the Condensation Shock Wave Using Bleed Slots)

  • 백승철;권순범;김희동
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.997-1004
    • /
    • 2002
  • The current study describes experimental and computational works on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order 10 control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is copuled with two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indrafi transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is signi ficantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향 (Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube)

  • 황규대;박노성;강병하
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

The Simulation of Semicale Natural Circulation Test 5-NC-3,S-NC-4 Using RELAP5/Mod3.1

  • Kim, S. N.;W. H. Jang
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.424-434
    • /
    • 1998
  • RELAP5/Mod3.1 code was assessed with the semiscale experiment S-NC-3, and S-NC-4, which simulated the two-phase natural circulation and reflux condensation for the SBLOCA of PWR, respectively . Test S-NC-3 and S-NC-4 calculation results showed that RELAP5/Mod3.1 quite well describes the influence of steam generator secondary side heat transfer degradation on both two-phase natural circulation and reflux condensation. A comparison between the calculated and measured two-phase mass flow rate in test S-NC-3 shows good agreement for primary mass inventory more than 92%. And RELAP5/Mod3.1 have a good mass flow rate prediction capability for the transient such as S-NC-4 except some flow oscillations. The reflux flow rate for S-NC-4 test is under predicted, and the overall results verify that the correct prediction of the reduced liquid level appears to be required for the correct calculation of the overall phenomena.

  • PDF

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

알루미늄 다채널 평판관내 R22의 흐름응축 열전달 성능 비교 (A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube)

  • 서영호;임대택;박기정;정동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1270-1275
    • /
    • 2004
  • Flow condensation heat transfer coefficients(HTCs) of R22 and R134a were measured on horizontal aluminum multi-channel tube. The experimental apparatus was composed of three main parts ; a refrigerant loop, a water loop and a water-ethylene glycol loop. The test section in the refrigerant loop was made of aluminum multi-channel tube of 1.4 mm hydraulic diameter and 0.53 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. The data scan vapor qualities $(0.1{\sim}0.9)$, mass flux ($200{\sim}400$ $kg/m^{2}s$) and heat flux ($7.3{\sim}7.7$ $kW/m^{2}$) at $40{\times}0.2^{\circ}C$ saturation temperature in small hydraulic diameter tube. It was found that some well-known previous correlations were not suitable for multichannel tube. So, It must develop new correlations for multi-channel tubes.

  • PDF

부양가스응축법에 의해 제조된 철산화물 나노 분말의 자기적 특성연구 (A Study on Magnetic Iron Oxide Nano Particles Synthesized by the Levitational Gas Condensation (LGC) Method)

  • 엄영랑;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.50-54
    • /
    • 2004
  • Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and $O_2$ gases. It was found that the phase transition from both $\gamma$-$Fe_2O_3$ and $\alpha$-Fe to $Fe_3O_4$, which was evaluated from the results of Mossbauer spectra, strongly depended on the $O_2$ flow rate. As a result, $\gamma$-$Fe_2O_3$ was synthesized under the $O_2$ flow rate of 0.1$\leq$$Vo_2$(Vmin)$\leq$0.15, whereas $Fe_3O_4$ was synthesized under the $O_2$, flow rate of 0.15$\leq$$Vo_2$(Vmin)$\leq$0.2.

환상유동 영역에서의 수평관내 응축 열전달계수 예측 (Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime)

  • 곽경민;배철호;정모;이상천
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF

Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

  • Liu, Hou-lin;Wang, Jian;Wang, Yong;Zhang, Hua;Huang, Haoqin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.119-131
    • /
    • 2014
  • The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.