• 제목/요약/키워드: Flow Collision

검색결과 231건 처리시간 0.026초

이중분무 교차지역에서의 액적유동특성의 통계학적 분석에 관한 연구 (A Study on the Statistical Analysis of the Flow Characteristics of Droplet in the Cross Region of Twin Spray)

  • 조대진;윤석주;최태민
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.635-644
    • /
    • 1994
  • This study investigated mainly on the flow characteristics of a droplet in the cross region of twin spray. The velocities of the droplet were measured along the axial and radial direction, and the flow characteristics of the droplet were statistically analyzed. For the statistical analysis, the probability density of the turbulent components has been studied, and then the Reynolds shear stress, the skewness and the flatness factors were calculated, and compared with the Gaussian value. Two pressure swirl stomizers were used for the twin spray system and kerosene was employed as the working liquid. 2-D PDA(particle dynamic analyzer) was used for the purpose of the measurement of droplet size and velocities. As a result, it was found that (1) the droplets collision was taken place strongly in the cross region. So, a large momentum loss of droplets due to the loss of natural movement direction was occurred, and momentum loss of radial direction was greater than that of axial direction. (2) The axial direction skewness factor approached to zero like the Gaussian distribution in the cross region of twin spray. (3) In the cross region of twin spray, the fluctuation instability of droplet was increased because of the development of the turbulence characteristics due to the droplet collision.

음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성 (Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy)

  • 조형건;강원수;석지권;이근선;이충원
    • 한국분무공학회지
    • /
    • 제4권3호
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Numerical Predictions of Heat Transfer in the Fluidized Bed Heat Exchanger

  • Ahn, Soo-Whan
    • 농업생명과학연구
    • /
    • 제44권4호
    • /
    • pp.29-43
    • /
    • 2010
  • The numerical analysis by using CFX 11.0 commercial code was done for proper design of the heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass ($3mm{\Phi}$), aluminum ($2{\sim}3mm{\Phi}$), steel ($2{\sim}2.5mm{\Phi}$), copper ($2.5mm{\Phi}$) and sand ($2{\sim}4mm{\Phi}$) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behavior might be attributed to the parameters such as surface roughness or particle heat capacity.

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

횡류수차 노즐형상이 성능과 내부유동에 미치는 영향 (Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine)

  • 최영도;임재익;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권4호
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

정유량 밸브의 카트리지의 오리피스 구멍의 유출계수 (Discharge Coefficients of Orifice Hole in the Cartridge of Constant Flow Control Valve)

  • 유선학;강승덕;양의석;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.305-308
    • /
    • 2004
  • The constant flow control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have similar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the constant flow control valve was developed. The performance of this control valve is effected by hole area and discharge coefficients of the cartridge holes. The discharge coefficients of orifice hole in the cartridge were testes with various sizes of holes and various flow direction in the holes. The discharge coefficients decreased as the hole size increased due to the collision at the cartridge wall of water jet. The effects of the flow direction at the hole were not significant on the discharge coefficients.

  • PDF

Eulerian-Lagrangian 방법에서 입자 및 유동 격자계 분리를 통한 2상 유동의 효율적 계산 (Efficient Computation of Two-Phase Flow by Eulerian-Lagrangian Method Using Separate grids for the Particles and Flow Field)

  • 박순일;이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.43-48
    • /
    • 2003
  • When the Eulerian-Lagrangian method is used to analyze the particle laden two-phase flow, a large number of particles should be used to obtain statistically meaningful solutions. Then it takes too much time to track the particles and to average the particle properties in the numerical analysis of two-phase flow. The purpose of this paper is to reduce the computation time by means of a set of particle gird separate to the flow grid. Particle motion equation here is the simplified B-B-O equation, which is integrated to get the particle trajectories. Particle turbulent dispersion, wall collision, and wall roughness effects are considered but the two-way coupling effects between gas and particles are neglected. Particle laden 2-D channel flow is solved and it is shown that the computational efficiency is indeed improved by using the current method

  • PDF

화학기상응축법에 의한 TiO$_2$ 나노분말의 합성 (1) (Synthesis of Nanosized TiO$_2$ Powder by Chemical Vapor Condensation Process(1))

  • 김신영;유지훈;이재성;김종렬;김병기
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.742-750
    • /
    • 1999
  • 화학기상응축법을 이용한 TiO2 나노분말합성시 전구체 주입속도 및 산소 반응기체유량의 변화에 따른 나노입자의 형성과정을 분말특성의 관점에서 조사하였다. 기상합성반응의 주요 열역학, 동역학적 인자인 과포화도, 충돌율, 체류시간의 상기 두 공정변수에 대한 의존성을 이론적으로 평가하였고, 이를 0.376, 0.742 m//min의 두 전구체 주입속도 조건에서 산소유량을 1에서 2slm까지 변화시키며 합성한 TiO2 나노분말의 특성과 관련하여 분석하였다 모든 조건에서 합성된 TiO2 분말은 20~30 nm의 크기를 갖는 미세한 anatase 상과 극소량의 rutilc상이 혼합되어 서로 느슨한 결합을 하고 있었다 전구체 주입속도가 0.376m//min의 경우, 전반적인 입도와 응집도는 0.742 m//min에 비해 작았으며, 산소유량이 증가할수록 체류시간과 충돌율이 감소하여 형성된 TiO2 분말의 입도는 감소하였다. 또한 산소유량 증가에 따른 과포화도의 감소는 분말형성과정과 기구에 영향을 미치는 것으로 판단되나, 정확한 분석을 위해서는 각각의 독립적인 열역학 및 동역학적 변수 조건하에서의 면밀한 고찰이 요구되었다.

  • PDF

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

에어로졸성막법에 의해 제작된 Bi:YIG 막에 미치는 에어로졸유량의 영향 (Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method)

  • 신광호
    • 한국자기학회지
    • /
    • 제18권1호
    • /
    • pp.14-18
    • /
    • 2008
  • 본 연구에서는 Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) 막을 에어로졸 성막법을 이용하여 제작함에 있어서, 에어로졸을 구성하는 수송가스의 유량이 막의 자기적 특성과 광학적인 특성에 대하여 분석하였다. 직경 $100{\sim}500$ nm 의 Bi:YIG 분말을 질소 가스를 수송가스로 사용하여 성막을 실시하였고, 이 때, 수송가스의 유량은 0.5 l/min${\sim}10$ l/min 사이에서 변화시켰다. 수송가스의 유량이 증가할수록 Bi:YIG 막의 보자력은 51 Oe에서 37 Oe까지 지수함수적으로 감소하였다. 이것은 충돌에너지가 증가함에 따라 막내부 혹은 막표면의 결함이 감소하였기 때문이라고 고찰되었다. 포화자화는 유량이 증가할수록 감소하였는데, 이는 충돌에너지가 강해짐에 따라 결정이 왜곡되는 힘을 받았기 때문이라고 고찰되었다.