• 제목/요약/키워드: Flow Behavior

검색결과 3,263건 처리시간 0.036초

Wall slip of vaseline in steady shear rheometry

  • Song, Ki-Won;Chang, Gap-Shik;Koo, Ja-Seung
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.55-61
    • /
    • 2003
  • The steady shear flow properties of vaseline generally used as a base of the pharmaceutical dosage forms were studied in the consideration of wall slip phenomenon. The purpose of this study was to show that how slip may affect the experimental steady-state flow curves of semisolid ointment bases and to discuss the ways to eliminate (or minimize) wall slip effect in a rotational rheometer. Using both a strain-controlled ARES rheometer and a stress-controlled AR1000 rheometer, the steady shear flow behavior was investigated with various experimental conditions ; the surface roughness, sample preparation, plate diameter, gap size, shearing time, and loading methods were varied. A stress-controlled rheometer was suitable for investigating the flow behavior of semisolid ointment bases which show severe wall slip effects. In the conditions of parallel plates attached with sand paper, treated sample, smaller diameter fixture, larger gap size, shorter shearing time, and normal force control loading method, the wall slip effects could be minimized. A critical shear stress for the onset of slip was extended to above 10,000 dyne/$\textrm{cm}^2$. The wall slip effects could not be perfectly eliminated by any experimental conditions. However, the slip was delayed to higher value of shear stress by selecting proper fixture properties and experimental conditions.

비탈면 경사 변화에 따른 토석류 거동의 수치모의 (Numerical Simulation for Behavior of Debris Flow according to the Variances of Slope Angle)

  • 김성덕;윤일로;오세욱;이호진;배우석
    • 한국지반환경공학회 논문집
    • /
    • 제13권6호
    • /
    • pp.59-66
    • /
    • 2012
  • 본 연구의 목적은 다양한 경사를 가진 비탈면에서 토석류의 거동과 메카니즘을 평가하는 것이다. 수치모의는 질량보존 및 운동량 보존에 관한 방정식에 기초하여 유한차분법을 이용하여 수행되었다. 토석류 유동 메카니즘은 토석류, 소류집합유동, 소류이동 등의 3가지 형태로 나눌 수 있다. 우선 하류부에서 공급유량의 변화에 따른 직선 사면과 2단 경사 사면에 대한 유량, 유동심, 토사체적 농도를 조사하였다. 공급유량이 적을수록 토석류가 도달한 직후에만 유량과 유동심의 상승이 있었고, 이후 감소하는 경향을 나타내지만, 공급유량의 증가로 인해 유량과 유동심의 곡선이 불안정하면서 높게 나타났다. RMS비 비교 결과 2단 경사 비탈면이 직선 비탈면보다 유량과 유동심이 적게 나타난 것을 확인하였다. 둘째, 2단 경사 비탈면에서 하류부의 경사각도 변화에 따른 유량, 유동심, 토사체적 농도를 조사하였다. 하류부 경사각도 $14^{\circ}$$16^{\circ}$사이의 유량과 유동심 곡선의 밴드폭이 다른 각도 사이보다 크게 나타났으며, 10초 이후에는 높은 값의 파동이 지속된다는 것을 확인하였다.

대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 3차원 토석류 거동분석 (A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian))

  • 정상섬;이광우;고준영
    • 한국지반공학회논문집
    • /
    • 제31권12호
    • /
    • pp.45-57
    • /
    • 2015
  • 본 연구에서는 토석류의 유하부 도달 속도 및 피해 영향범위 등의 흐름 특성을 파악하기 위하여 대변형 3차원 유한요소 해석을 수행하였다. 대변형 해석은 ABAQUS (Ver 6.13, 2013)의 Coupled Eulerian-Lagrangian (CEL) 기법을 이용하였으며, 실제 토석류 발생 지역의 관측 값과 해석 결과를 비교함으로써 CEL 대변형 해석기법의 타당성을 검증하였다. 그 결과, CEL 대변형 해석기법은 토석류 거동을 합리적으로 예측 할 수 있음을 확인하였다. 또한 토석류의 흐름에 사방댐이 미치는 영향을 확인하기 위하여 추가적인 해석을 수행하여 분석하였다. 그 결과, 사방댐에 의해 유하부로 흘러 내려오는 토석류의 속도와 체적의 감소효과를 확인하였고 토석류에 의해 발생하는 충격력을 산정하였다. 이로 인하여 대변형 토석류 해석기법은 기존 사방댐 안정성 평가 및 사방댐 설계에 활용이 가능할 것으로 판단된다.

Flow-based Anomaly Detection Using Access Behavior Profiling and Time-sequenced Relation Mining

  • Liu, Weixin;Zheng, Kangfeng;Wu, Bin;Wu, Chunhua;Niu, Xinxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2781-2800
    • /
    • 2016
  • Emerging attacks aim to access proprietary assets and steal data for business or political motives, such as Operation Aurora and Operation Shady RAT. Skilled Intruders would likely remove their traces on targeted hosts, but their network movements, which are continuously recorded by network devices, cannot be easily eliminated by themselves. However, without complete knowledge about both inbound/outbound and internal traffic, it is difficult for security team to unveil hidden traces of intruders. In this paper, we propose an autonomous anomaly detection system based on behavior profiling and relation mining. The single-hop access profiling model employ a novel linear grouping algorithm PSOLGA to create behavior profiles for each individual server application discovered automatically in historical flow analysis. Besides that, the double-hop access relation model utilizes in-memory graph to mine time-sequenced access relations between different server applications. Using the behavior profiles and relation rules, this approach is able to detect possible anomalies and violations in real-time detection. Finally, the experimental results demonstrate that the designed models are promising in terms of accuracy and computational efficiency.

Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations : Linear Viscoelastic Behavior

  • Park, Eun-Kyoung;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권3호
    • /
    • pp.161-171
    • /
    • 2011
  • The objective of the present study is to systematically characterize a linear viscoelastic behavior of petroleum jelly in small amplitude oscillatory shear flow fields correspondent to the rheological ground state. With this aim, using a strain-controlled rheometer, the dynamic viscoelastic properties of commercially available petroleum jelly have been measured at $37^{\circ}C$ (body temperature) over a wide range of angular frequencies at an extremely small strain amplitude of 0.1 %. In this article, the linear viscoelastic behavior was reported in detail and then explained from a structural view-point of petroleum jelly and discussed in depth with respect to the consumer's requirements. Main findings obtained from this study can be summarized as follows : (1) The storage modulus is always greater than the loss modulus over an entire range of angular frequencies studied, meaning that the linear viscoelastic behavior of petroleum jelly is dominated by an elastic nature rather than a viscous nature. (2) Petroleum jelly shows a desirable linear viscoelastic behavior with respect to the consumer's requirements because it is undesirable for the product to flow down from the skin at an initial stage upon contact with the human skin. (3) A fractional derivative model shows an excellent applicability to describe a linear viscoelastic behavior of petroleum jelly. However, this model should be used with a special caution because there exists no physical meaning for the model parameters. (4) A modified form of the Cox-Merz rule gives a good ability to predict the relationship between steady shear flow properties (nonlinear behavior) and dynamic viscoelastic properties (linear behavior) for petroleum jelly.

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

실지형을 지나는 대기유동에 대한 수치모델의 검증 (Validation of Numerical Model for the Wind Flow over Real Terrain)

  • 김현구;이정묵;노유정
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Viscoelastic Fluid Flow in a Sudden Expansion Circular Channel as a Model for the Blood Flow Experiments

  • Pak, Bock-Choon;Kim, Cheol-Sang
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권2호
    • /
    • pp.233-242
    • /
    • 1990
  • In the current flow visualization studies, the role of non-Newtonian characteristics (such as shearra to dependent viscosity and viscoelasticity ) on flow behavior across the sudden ex- pansion step in a circular pipe as a model for blood flow experiments is investigated over a wide range of Reynolds numbers. The expansion ratios tested are 2.000 and 2.667 and the range of the Reynolds number covered in the current flow visualization tests are 10~35, 000 based on the inlet. diameter. The reattachment longuEs for the viscoelastic fluids in the lami- nar flow regime are found to be much shorter than those for the Newtonian fluid. In addition it decreases significantly with increasing concentration of viscoelastic fluids at the same Reynolds number. However, in the turbulent flow regime, the reattachment length for the viscoelastic fluids Is two or three times longer than those for water, and gradually increases with increasing concentration of viscoelastic solutions, resulting In 25 and 28 step-height dis- tances for 500 and 1, 000 lpm ployacrylamide solutions, respectively. This may be due to the fact that the elasticity in pobacrylamide solutions suppresses the eddy motion and controls separation and reattachment behavior in the sudden expansion pips flow.

  • PDF

직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향 (Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine)

  • 이정훈;강정중;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

Study on Characteristics of Subchannel Analysis Code at Low Flow Steam Line Break Condition

  • Kwon, Hyuk-Sung;Lim, Jong-Seon;Hwang, Dae-Hyun;Chun, Tae-Hyun;Park, Jong-Ryul
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.403-408
    • /
    • 1996
  • The subchannel analysis was performed to verify the behavior of hot channel characteristics and obtain the information to support the core thermal-hydraulic behavior at post-trip steam line break with low flow condition. During this postulated accident, buoyancy-induced cross flow occurs, and the coupled nuclear and thermal-hydraulic interactions become important. The code predictions with TORC are in good agreement with the test data. Under such conditions, the mass flow increase in the hot channel by buoyancy-induced cross flow depends on the parameter $GR^{*}\;/\;Re^2$, and buoyancy effect becomes more noticeable as $GR^{*}\;/\;Re^2$ increases.

  • PDF