• Title/Summary/Keyword: Flow Aggregation

Search Result 172, Processing Time 0.039 seconds

Flow Aggregation Criteria in Networks with Rate-Guaranteeing Servers

  • Joung, Jin-Oo;Song, Jong-Tae;Lee, Soon-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1097-1102
    • /
    • 2008
  • An effective method for calculating delay bounds of flows through flow aggregations and deaggregations is given. Based on this calculation, it is suggested a simple criteria for flow aggregation whether the aggregation will induce an increased delay bound. The criteria is evaluated in a few realistic scenarios.

Flow Aggregation of Rate Controlled Round-Robin Scheduler

  • Kim, Ki-Cheon
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.351-359
    • /
    • 2004
  • Flow aggregation is a scalable method to provide quality of service (QoS) guarantees to a large number of flows economically. A round-robin scheduler is an efficient scheduling algorithm. We investigate flow aggregation using a round-robin scheduler and propose the use of periodic timer interrupts for rate control of the round-robin scheduler. The proposed flow aggregator is a single-stage scheduler compared to Cobb's two-stage flow aggregator consisting of an aggregator and non-aggregating scheduler. It is possible to implement flow aggregation in the existing routers with only a software upgrade. We also present a simulation study showing the delay behaviors of the proposed algorithm.

  • PDF

Ultrasound Backscattering from Erythrocyte Aggregation of Human, Horse and Rat Blood under Rotational Flow in a Cylindrical Chamber

  • Nam, Kweon-Ho;Paeng, Dong-Guk;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.159-165
    • /
    • 2006
  • Human, horse and rat bloods in a cylindrical chamber where flow was controlled by a stirring magnet were used for studying red blood cell aggregation. Ultrasound backscattered powers from blood were obtained from the backscattered signals measured by a 5 MHz focused transducer in a pulse-echo setup. The experimental results showed the differences in red blood cell (RBC) aggregation tendency among the three mammalian species with an order of horse > human > rat. The ultrasound backscattered power decreased with stirring speed in human and horse blood, but no variations were observed in rat blood. Sudden flow stoppage led to the slow increase of the backscattered power for human and horse blood. There was no self-aggregation tendency in rat blood. The enveloped echo images showed the spatial and temporal variations of RBC aggregations in the cylindrical chamber. These observations from the different mammalian species may give a better understanding of the mechanism of RBC aggregation.

Transient microfluidic approach to the investigation of erythrocyte aggregation: comparison and validation of the method

  • Hou, Jian-Xun;Shin, Se-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.253-260
    • /
    • 2008
  • A method based on transient shear flow dynamics of red cell aggregates was developed to investigate reversible re-aggregation processes with decreasing shear flow. In the microchannel-flow aggregometry, the aggregated red blood cells that are subjected to continuously decreasing shear stress in microchannel flow were measured with the use of a laser-scattering technique. Both the laser-backscattered intensity and pressure were simultaneously measured with respect to time, resulting in shear stress ranging from $0{\sim}35\;Pa$ for a time period of less than 30 seconds. The time dependent recording of the backscattered light intensity (syllectogram) yielded an upward convex curve with a peak point, which reflected the transition threshold of aggregation in the RBC suspensions. Critical-time and critical-shear stress corresponding to the peak point were examined by varying the initial pressure-differential and the micro channel depth, and these results showed good potential for being used as new aggregation indices. In the present study, these newly proposed indices were also validated by differentiating the effect of fibrinogen on RBC aggregation and then these indices were compared to the conventional indices that were measured by a rotational aggregometer.

A study on application of aggregation method based on power flow matching technique and multi-variable control method to the power system (선로 조류 유지 기법에 근거한 계통축약 및 다변수 제어기법 적용 연구)

  • Lee, Byung-Ha;Oh, Min-Hyuk;Baek, Jung-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.342-344
    • /
    • 2006
  • The modem enormous electric power system has made power system analysis much more complex and difficult. For effective analysis of the power system, model reduction and aggregation is required. In this paper, a new aggregation method is presented to aggregate the coherent generators in the large scale power system while matching the power flow. In order to demonstrate the effects of this aggregation method, it is applied to a small scale power system. A multi-variable control technique of $H_{\infty}$ control is also applied to enhance the dynamic stability of the aggregated power system.

  • PDF

Determination of the Optimal Aggregation Interval Size of Individual Vehicle Travel Times Collected by DSRC in Interrupted Traffic Flow Section of National Highway (국도 단속류 구간에서 DSRC를 활용하여 수집한 개별차량 통행시간의 최적 수집 간격 결정 연구)

  • PARK, Hyunsuk;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.63-78
    • /
    • 2017
  • The purpose of this study is to determine the optimal aggregation interval to increase the reliability when estimating representative value of individual vehicle travel time collected by DSRC equipment in interrupted traffic flow section in National Highway. For this, we use the bimodal asymmetric distribution data, which is the distribution of the most representative individual vehicle travel time collected in the interrupted traffic flow section, and estimate the MSE(Mean Square Error) according to the variation of the aggregation interval of individual vehicle travel time, and determine the optimal aggregation interval. The estimation equation for the MSE estimation utilizes the maximum estimation error equation of t-distribution that can be used in asymmetric distribution. For the analysis of optimal aggregation interval size, the aggregation interval size of individual vehicle travel time was only 3 minutes or more apart from the aggregation interval size of 1-2 minutes in which the collection of data was normally lost due to the signal stop in the interrupted traffic flow section. The aggregation interval that causes the missing part in the data collection causes another error in the missing data correction process and is excluded. As a result, the optimal aggregation interval for the minimum MSE was 3~5 minutes. Considering both the efficiency of the system operation and the improvement of the reliability of calculation of the travel time, it is effective to operate the basic aggregation interval as 5 minutes as usual and to reduce the aggregation interval to 3 minutes in case of congestion.

Measurement of red blood cell aggregation by analysis of light transmission in a pressure-driven slit flow system

  • Shin, S.;Park, M.S.;Jang, J.H.;Ky, Y.H.;Suh, J.S.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The aggregation characteristics of red blood cells (RBCs) were measured using a newly developed light-transmission slit rheometer. Conventional methods of RBC disaggregation such as the rotational Couette system were replaced with a pressure-driven slit flow system with a vibrational mechanism. Using a vibration generator, one can disaggregate the RBC aggregates stored in the slit. While shear stress decreases exponentially, instantaneous pressure and the transmitted light intensity were measured over time. Applying an abrupt shearing flow after disaggregation caused a rapid elongation of the RBCs followed by loss of elongation with the decreasing shear stress. While the shear stress is further decreasing, the RBCs start to re-aggregate and the corresponding transmitted intensity increases with time, from which the aggregation indices can be obtained using a curve-fitting program.

An Interference Reduction Scheme Using AP Aggregation and Transmit Power Control on OpenFlow-based WLAN (OpenFlow가 적용된 무선랜 환경에서 AP 집단화 및 전송 파워 조절에 기반한 간섭 완화 기법)

  • Do, Mi-Rim;Chung, Sang-Hwa;Ahn, Chang-Woo
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1254-1267
    • /
    • 2015
  • Recently, excessive installations of APs have caused WLAN interference, and many techniques have been suggested to solve this problem. The AP aggregation technique serves to reduce active APs by moving station connections to a certain AP. Since this technique forcibly moves station connections, the transmission performance of some stations may deteriorate. The AP transmit power control technique may cause station disconnection or deterioration of transmission performance when power is reduced under a certain level. The combination of these two techniques can reduce interference through AP aggregation and narrow the range of interferences further through detailed power adjustment. However, simply combining these techniques may decrease the probability of power adjustment after aggregation and increase station disconnections upon power control. As a result, improvement in performance may be insignificant. Hence, this study suggests a scheme to combine the AP aggregation and the AP transmit power control techniques in OpenFlow-based WLAN to ameliorate the disadvantages of each technique and to reduce interferences efficiently by performing aggregation for the purpose of increasing the probability of adjusting transmission power. Simulations reveal that the average transmission delay of the suggested scheme is reduced by as much as 12.8% compared to the aggregation scheme and by as much as 18.1% compared to the power control scheme. The packet loss rate due to interference is reduced by as much as 24.9% compared to the aggregation scheme and by as much as 46.7% compared to the power control scheme. In addition, the aggregation scheme and the power control scheme decrease the throughput of several stations as a side effect, but our scheme increases the total data throughput without decreasing the throughput of each station.

Non-Work Conserving Round Robin Schedulers (비 작업보존형 라운드로빈 스케줄러)

  • Joung, Ji-Noo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1663-1668
    • /
    • 2005
  • There have been numerous researches regarding the QoS guarantee in packet switching networks. IntServs, based on a signaling mechanism and scheduling algorithms, suggesting promising solutions, yet has the crucial complexity problem so that not enough real implementations has been witnessed. Flow aggregation is suggested recently to overcome this issue. In order to aggregated flows fairly so that the latency of the aggregated flows is bound, however, a non-work conserving scheduler is necessary, which is not very popular because of its another inherent complexity. We suggest a non-work conserving scheduler, the Round Robin with Virtual Flow (RRVF), which is a variation of the popular Deficit Round Robin (DRR). We study the latency of the RRVF, and observe that the non-work conserving nature of the RRVF yields a slight disadvantage in terms of the latency, but after the aggregation the latency is greatly reduced, so that e combined latency is reduced. We conclude that the flow aggregation through RRVF can actually reduce the complexity of the bandwidth allocation as well as the overall latency within a network.

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.