
ETRI Journal, Volume 26, Number 4, August 2004 Kicheon Kim 351

Flow aggregation is a scalable method to provide quality
of service (QoS) guarantees to a large number of flows
economically. A round-robin scheduler is an efficient
scheduling algorithm. We investigate flow aggregation
using a round-robin scheduler and propose the use of
periodic timer interrupts for rate control of the round-
robin scheduler. The proposed flow aggregator is a single-
stage scheduler compared to Cobb’s two-stage flow
aggregator consisting of an aggregator and non-
aggregating scheduler. It is possible to implement flow
aggregation in the existing routers with only a software
upgrade. We also present a simulation study showing the
delay behaviors of the proposed algorithm.

Keywords: Packet scheduler, flow aggregation, rate
control, IntServ, DiffServ, QoS.

Manuscript received Dec. 2, 2003; revised June 7, 2004.
Kicheon Kim (phone: +82 31 219 1840, email: kckim@ajou.ac.kr) is with the School of

Information and Communication, Ajou University, Suwon, Korea.

I. Introduction

When fair queuing [1] was first introduced for providing a
delay bound and reserved rate to real-time traffic, the packet
scheduler worked on a per-session or per-flow basis. A series of
fair queuing algorithms were devised improving efficiency and
fairness [2], [3]. Fair queuing was proposed for the integrated
services (IntServ) quality of service (QoS) mechanism in the
Internet standards. However, as the link speed increases, the
number of flows sharing a link also increases proportionally.
So, per-flow packet scheduling has become uneconomical for
high-speed links. The Internet standard introduced
differentiated services (DiffServ) to improve scalability of the
packet scheduling algorithm, and flow aggregation was
proposed as an efficient solution to reduce the number of
network states related to packet scheduling.

This paper is about flow aggregation for an affordable QoS
solution. We think that the Internet QoS should be deployed
from a simple QoS mechanism for loose real-time applications
such as internet TV broadcasting and internet cyber education
and gradually upgraded. We expect to use flow aggregation
with a round-robin scheduler as the first phase of QoS
deployment. The proposed flow aggregation is slightly
different from the existing flow aggregation method and is
suitable for a hardware-based scheduler or large scale
schedulers based on approximation.

In section II, we present a brief introduction to fair queuing
and flow aggregation. Section III shows a packet transmission
experiment which gives a notion on traffic control timing
granularity. Section IV presents a round-robin packet scheduler
with rate control. In section V, we investigate the delay bounds
of the constituent flows of the proposed aggregating scheduler.
Section VI shows a simulation study on the delay behaviors of

Flow Aggregation of
Rate Controlled Round-Robin Scheduler

 Kicheon Kim

352 Kicheon Kim ETRI Journal, Volume 26, Number 4, August 2004

the packet scheduler devised in this paper. In section VII, we
draw our conclusion.

II. Fair Queuing and Flow Aggregation

When fair queuing was first introduced [1], it was a round-
robin scheduler serving multiple packet queues in a circular
order. It was expected to provide firewalls between real-time
traffic and guarantee a reserved rate to each real-time traffic
flow. However, the round-robin scheduler was not further
developed for some time.

Instead, another type of scheduler was introduced, called
VirtualClock [2]. The main contribution of VirtualClock was
that it provided hints on the delay bounds of real-time packet
flows by sorting packets according to the virtual clock stamp
on the packets. The virtual clock stamp is now widely
understood as the virtual finish time of a fluid server at the
reserved rate. It takes fRifL ... to serve the packet from the
service start time, where ifL .. is the length of packet i of
flow f, and fR. is the reserved rate of flow f. The service start
time of the first packet of each flow is the arrival time of the
first packet. The service start time of the successive packet is
then obtained by taking the larger value between the virtual
finish time of the previous packet and the packet arrival time.
The packet queue is sorted in the increasing order of the virtual
finish time of each packet. So, we can classify this type of
scheduler as a sorted-queue scheduler. The delay bound of the
VirtualClock scheduler was derived later [4] and is equivalent
to the virtual finish time of each packet.

A theoretical analysis of the fair queuing scheduler was first
presented in generalized processor sharing (GPS) [3]. GPS is
also a sorted-queue scheduler and similar to VirtualClock in
many ways, but it is different in regard to virtual finish time
calculation. The virtual finish time is obtained by simulating a
fluid server. The scheduler serves each backlogged flow by the
weighted share. The virtual time of the system should be
recalculated at every change in the backlogged flows. When
the flows are serviced at a rate faster than the reserved rate, the
system virtual time gets faster than the real time. One possible
drawback of this type of scheduler is a lack of capability for the
rate control of each flow.

Self clocked fair queuing (SCFQ) [4] is also a sorted-queue
scheduler similar to GPS and was suggested as a method to
obtain the system virtual time from the virtual finish time of the
packet receiving service. This scheduler is more efficient than
GPS. So, it is suitable for a high speed link but provides larger
delay bounds than VirtualClock or GPS.

Worst-case fair weighted fair queuing (WF2Q) [7] is also a
sorted-queue scheduler and additionally performs rate control
by inhibiting the transmission of the packet until the virtual

finish time of the previous packet. The first packet of a flow
does not need rate control. This rate control reduces the
demand for the buffer in the downstream router. This can
eliminate the packet loss due to a buffer shortage in the
downstream router.

The next step was an introduction of flow aggregation. The
basic idea of flow aggregation is binding multiple flows into a
single aggregate flow. The aggregate flow is treated as a single
flow in packet scheduling. A packet scheduling method
utilizing flow aggregation was presented in Aggregated Flow
Fair Queuing (AFFQ) [9]. Later, a thorough theoretical
analysis on flow aggregation was presented by Cobb [10]. He
showed that quality of service guarantees can be preserved in
spite of flow aggregation.

Fig. 1. Scheduler network for Cobb’s flow aggregation.

aggregator aggregator

f e

scheduler
d

d c

c

separator

scheduler

d
c
e

g

g b

b

h

g

Figure 1 shows Cobb’s flow-aggregation network model. An
aggregator is a packet scheduler similar to a WF2Q scheduler.
Flows e and g are aggregated into flow d by an aggregator.
Flows c and d need not be aggregated if the two flows are
forwarded into different directions at the immediate
downstream router. So, flows d and e are scheduled into a
single link, but not aggregated. This means that a two-stage
scheduler network is necessary at a router as shown in Fig. 1.
This brings about an additional delay. The delay of flow g at the
aggregator is ,... gRigL and an additional delay at the non-
aggregation scheduler is ()..... eRgRigL + The aggregator
should perform a tight rate control such as WF2Q. Otherwise,
any flow serviced at a faster rate than the reserved rate can cause
an unexpected large delay at the following scheduler because
the scheduler guarantees only the reserved rate,

.... eRgRdR += The separator does not cause any additional
delay. Cobb’s flow aggregation is implemented by simulating
the scheduler network as shown in Fig. 1. This requires high
flexibility in the scheduler design. However, while the fair
queuing schedulers are fast, they are not so flexible in

ETRI Journal, Volume 26, Number 4, August 2004 Kicheon Kim 353

supporting a two-stage scheduler network. For these schedulers,
we may need to change the flow aggregation method.

There are many different types of round-robin schedulers,
but DRR is the first round-robin scheduler analytically studied
[5]. Compared to a sorted-queue scheduler, a round-robin
scheduler is much more efficient. The computing complexity
of a sorted-queue scheduler is O(log N) where N is the number
of flows. However, the computing complexity of a round-robin
scheduler is O(1). However, the delay behavior is better with a
sorted-queue scheduler. The DRR scheduler is characterized by
round size, T. The amount of traffic which a DRR scheduler is
allowed to transmit each round is called quantum ,. fQ and
defined as the product of the round size and reserved rate;

... fTRfQ = Thus, the delay bound of a DRR scheduler is
larger than or equal to T. A sorted-queue scheduler can give
smaller delay bounds than a DRR scheduler. However, at the
early stage of QoS deployment an efficient round-robin
scheduler can be deployed. In this case, flow aggregation for a
round-robin scheduler should be considered.

Another important research about fair queuing is on the
hardware-based packet scheduler [12], [13]. The performance
of the software implementation of fair queuing algorithms
may be limited. However, in hardware implementation,
massive parallelism is employed for improving the sorting
performance using a concurrent comparison. However, a
hardware-based scheduler is not so flexible in adjusting the
scheduler to perform a frequent establishment and release of
flows. Flow aggregation makes the situation even worse.
There is also a problem in the speed of deployment of QoS
mechanisms in the Internet. We can not deploy such
mechanisms all at once, but must gradually upgrade. We
think that QoS mechanisms should be deployed by upgrading
the existing routers in the current Internet from the entry level
QoS. Our first requirement is an affordable solution for loose
real-time services such internet TV broadcasting and cyber
education services, which do not require tight interactivity.
We defined this type of QoS as the entry level QoS guarantee.
The scheduler should be very simple, and the number of
flows can be minimized by flow aggregation. We combine a
round-robin scheduler and flow aggregation for this purpose.
Our work starts with simple experiments described in the
following section.

III. Traffic Control Timing Granularity

Our traffic control algorithm is based on an experiment on
traffic control timing granularity. In the experiment, we tried to
transmit packets from a computer every 5 ms. We programmed
various computers to schedule the packet transmission process
to transmit a packet and then sleep for the remaining 5 ms.

However, it was impossible to achieve a finer granularity than
10 ms in the packet transmission interval. Two packets were
transmitted every 10 ms on some computers such as Sun
workstations. There were also computers transmitting four
packets every 20 ms as shown in Fig. 2. This is because most
computers use periodic timer interrupts to maintain their clocks.
Thus, the packet transmission process wakes up every 10 ms.
The conventional processor is not suitable for achieving a
precise timing granularity of less than 10 ms especially under a
multitasking environment.

However, we can devise a rate control mechanism with the
periodic timer interrupts and a credit variable. With the rate
control mechanism, a flow can transmit a packet only when the
credit of the flow is larger than or equal to the packet size.
Whenever the flow transmits a packet, the credit is decreased
by the packet size. If the size of the packet is larger than the
remaining credit, the flow is blocked and cannot transmit any
more. The timer interrupt increases the credit to the product of
the reserved rate, ,. fR and the interrupt interval, T. This
amount of information, ,. fTR is defined as quantum .. fQ
Each packet should not be larger than the quantum size, or it is
discarded.

Fig. 2. Inter-packet delay with a 5-ms desired delay.

Linux, HP Sun Desired

1 2 3 4 5 6 7 8 9 10 11
Packet number

20

15

10

5

0

In
te

r-
pa

ck
et

 d
el

ay
 (m

s)

IV. Packet Scheduler

We have presented a packet scheduler based on the data
structure of traffic-related variables [8]. The data structure was
named as the flowmeter. The flowmeter-based packet
scheduler is shown in Fig. 3. Now, we combine the rate control
mechanism of the previous section with the packet scheduler
similar to the DRR [3].

In case there are multiple flowmeters for a link, it is not
efficient to update the credit variables of all the flowmeters every

354 Kicheon Kim ETRI Journal, Volume 26, Number 4, August 2004

Fig. 3. A flowmeter-based packet scheduler with timer interrupts.

Timer Server Transmission
link

block idle ready

time the timer interrupt is generated. Instead, each flowmeter has
a clock variable, last_event_time. When we need to
calculate the credit of a flowmeter, this clock variable is
compared to current_time, which is the master clock
variable of a link and counts the number of timer interrupts. If the
two clock variables are different, the credit is refreshed to the
quantum of the flowmeter, and last_event_time is set to
current_time. With this scheme, we can calculate the credit
of a flowmeter only when it is required. Thus, the packet
scheduler can control the rates of multiple flows efficiently using
the conventional processor.

A flowmeter has head and tail pointers for a first-in first-out
(FIFO) packet queue. The incoming packets are queued to the
corresponding flowmeter. When there is no packet queued to a
flowmeter, the flowmeter is idle. An idle flowmeter does not
belong to any list and is isolated. The initial state of a
flowmeter is also idle. When a new packet arrives and the
packet is not larger than the credit of the flowmeter, the
flowmeter is appended to the ready list as shown in Fig. 3. If
the packet is larger than the credit, the flowmeter is appended
to the block list. These two lists are of the FIFO service
discipline.

When the current flowmeter of a link is empty, the server
picks up the top flowmeter from the ready list and compares
the last_event_time of the flow-meter to the system
clock time, current_time. If the two clocks are different,
the credit is refreshed to the quantum stored in the flowmeter
and the last_event_time of the flowmeter is changed to
the system clock time. Then, the server transmits packets from
the flowmeter while there is enough credit. When there is not
enough credit, the flowmeter is appended to the block list. The
interrupt from the timer increases the system clock time and
moves all the flowmeters in the block list to the ready list. In
order to save time, the two lists are concatenated, not actually
moving the flowmeters one by one.

We can increase the credit when we move the flowmeters
from the block list to the ready list. However, this can make the

timer interrupt service routine very time-consuming. Thus, we
calculate the credit when the flowmeter is picked up as the
current flowmeter. Once the current flowmeter is picked up, the
flow is allowed to transmit packets as long as there is enough
credit. Each time a packet is transmitted, the credit decreases by
the packet size. If there is no packet in the flowmeter, it
becomes idle and the server picks up the next flowmeter from
the ready list.

One delicate problem of this credit operation is the boundary
behavior. This is when the timer interrupt is generated while a
flow is being served. In general, a flowmeter is appended to the
block list when a quantum of traffic for the flowmeter is
transmitted and the flow is waiting for a timer interrupt. In this
case, the last_event_time of the flowmeter and
current_time of the link are the same. If these two clocks
are different, we define this as the boundary behavior and the
flowmeter is appended to the ready list instead of the block list.
When the timer interrupt is generated, all the flowmeters in the
block list are already moved to the ready list before the
boundary flow completes the transmission of packets. Even
though the flowmeter is appended to the ready list, all the other
flows can be served within the timer interrupt interval, T.
Therefore, there is no problem to guarantee the reserved rate of
each flow, but the rate of the boundary flow can reach up to
twice the reserved rate. This can cause queuing of the traffic in
the downstream scheduler and increase the theoretical delay
bound. We will discuss more about the theoretical delay bound
in the next section.

A finite state machine representation of the packet scheduler is
shown in Fig. 4. In this way, we can provide delay bounds and a

Fig. 4. A finite state machine representation of the packet scheduler.

idle

ready

arr, credit+

tx, credit-,
clock+

interrupt

pick

block

tx, packet-

tx, credit-,
clock=

arr, credit-

tx, credit+

arr: packet arrival
tx: transmit a packet
pick: picked up by the server
interrupt: timer interrupt generated
packet-: no packet
credit+: enough credit
credit-: not enough credit
clock+: clocks are different
clock=: clocks are the same

current

ETRI Journal, Volume 26, Number 4, August 2004 Kicheon Kim 355

rate control function to real-time flows. Our packet scheduler
requires a computing complexity of O(1) and serves all the flows
at least once every timer interrupt interval, T. The resource
reservation should meet the rate admission control condition,

,.∑ ≤
f

CfR where C is the outgoing link capacity.
The next step is about how to implement flow aggregation

with the proposed round-robin scheduler. We considered a
different network model from Cobb’s flow aggregation. In
Fig. 5, flows f and g are two separate flows in the upstream
scheduler, but these two flows are aggregated and share the
input and output links in the downstream scheduler. The two
flows also share the same FIFO queue in the downstream
packet scheduler. In this way, we can reduce the number of
flows in the downstream scheduler and implement flow
aggregation without using a two-stage scheduler network of
Cobb’s flow aggregation. One of the important advantages of
our flow aggregation model is that the aggregator is not
required in the upstream scheduler. Flow separation is
performed by the switch fabric before the packet scheduler. By
applying the proposed rate-control scheme in the upstream
scheduler, we can achieve a delay bound in the downstream
scheduler. An analysis on the delay bound is presented in the
next section.

We can devise two different protocol solutions for supporting
flow aggregation. First, we can consider IP tunneling. This is a
term for encapsulating the packets of flows f and h with an
additional common IP header when the packets leave the
upstream scheduler. The two flows are then naturally treated as
a single flow in the downstream scheduler. For flow separation,
the packets are de-capsulated from the additional IP header
when they leave the router. Then the two flow packets have
different IP headers. Thus, they are treated as two different
flows in the downstream router. One possible drawback of this
IP tunneling scheme is the protocol overhead caused by the
additional IP header.

Second, we can consider label switching. Assume a flow
label consists of virtual path identifier (VPI) and virtual channel
identifier (VCI) fields. The VPI of flow f is 0 and the VPI of

Fig. 5. Proposed flow aggregation network model.

q0

q1

f

h

q2

q3
e

link1

Downstream
scheduler

Upstream
scheduler

g

link0

flow h is 1 in the upstream scheduler. The labels of the packets
of the two flows are changed in the upstream router and the
two flows are rate controlled as shown in Fig. 5. These two
flows can have the same VPI value in the downstream
scheduler, though the VCI values are different for flow
separation in the further downstream routers. The downstream
scheduler performs queuing and scheduling based on VPI.
Therefore, the two flows are treated as a single flow. Currently,
the Internet does not support label switching, but multiprotocol
label switching (MPLS) is being widely studied for the future
Internet.

V. Delay Bound

We are interested in achieving deterministic delay bounds of
the constituent flows in the down stream scheduler shown in
Fig. 5. In the upstream scheduler, flows f and h are two separate
flows. In the downstream scheduler, the two flows share the
input and output links and the packet queue. The two flows
form an aggregate flow, g, in the downstream scheduler. This
means that the two flows are heading to the same further
downstream scheduler, which is connected to the output link of
the downstream router. Flows f and h are constituent flows of
flow g. Flow g is not a constituent of any other flow. Therefore,
we say that flow g is a root flow. Flows f and h are root flows in
the upstream scheduler, too.

The DRR scheduler guarantees the throughput of each root
flow. However, the proposed rate-controlled round-robin
scheduler is trickier. Therefore, we apply a few conditions in
this paper. The amount of traffic served by the round-robin
scheduler each round is determined by the quantum size,

... fTRfQ = Each packet should not be larger than the
quantum size. If any packet is larger than the quantum, the
packet can not be served because the credit of the flow is not
accumulated after multiple rounds. Thus, a packet larger than
the quantum is discarded.

We have another condition in this paper. Because the packets
are served in a FIFO manner, if there is a packet larger than the
remaining credit, the packet can block the transmission of the
following packets smaller than the remaining credit. We call
this large packet blocking, and because of it, the reserved
bandwidth can not be fully utilized. Therefore, the delay bound
could get larger. If all the packets are of the same size, large-
packet blocking does not take place and we can achieve a tight
delay bound. The ATM switching and transmission systems
use a fixed-size packet, called an ATM cell. Therefore, a rate
controlled round-robin scheduler is a good match with ATM.
Thus, we will discuss the delay bound only for a fixed-size
packet network in this paper. The rate controlled round-robin
packet scheduler with a variable-size packet is still under study.

356 Kicheon Kim ETRI Journal, Volume 26, Number 4, August 2004

Theorem: A flow aggregator implemented with a rate
controlled round-robin scheduler in a fixed-size packet network
provides a delay bound of twice the round size at the
immediate downstream scheduler.

Proof: The upstream scheduler can transmit packets only
while there is enough credit. Once the credit of a flow is
refreshed, the flow can transmit up to a quantum of traffic. The
interval between the first and second quantum of traffic varies
from zero to twice the round size, or 2T. This can be explained
by using the timing diagram of Fig.6.

Fig. 6. Timing diagram.

t0 t1-- : arrival of flow f traffic

t1-: departure of the first quantum

t1+: departure of the second quantum

t2+: departure of the third quatumt2

t1

d1
--

d1
-

T

time

Suppose that flow f is the only flow consisting of aggregate
flow g and has just been established through the upstream and
downstream schedulers as shown in Fig. 5, and that several
quanta of flow f traffic arrives at the upstream scheduler at −−

1t
as shown in Fig. 6. The last bit of the first quantum of flow f
traffic is transmitted at .1

−t We ignore the propagation delay
between the upstream and downstream routers. Thus, as soon
as the last bit of the first quantum of flow f traffic is transmitted,
it arrives at the downstream scheduler. The propagation delay
is constant and we can add the delay when it is necessary. The
root flow is served at least once every round time, T. Therefore,
the delay between −−

1t and −
1t is ,1

−−d and it is upper
bounded by the frame size, T, plus the transmission delay of a
maximum size packet. The last term could be caused by the
best-effort traffic. Thus, we have

,max111 uprLTttd +≤−= −−−−−

where upr is the transmission rate of the upstream scheduler.
After the transmission of the first quantum of flow f traffic,

the flowmeter of flow f does not have enough credit to transmit
the next quantum of traffic. Therefore, it is moved to the block
list and waits for a timer interrupt. The first timer interrupt after
the transmission of the first quantum of traffic is generated at t1.
The waiting time between −

1t and t1, ,1
−d is less than the

timer interrupt interval, T. The second quantum of flow f traffic
is transmitted at .1

+t The delay between t1 and +
1t is ,1

+d

and it is as large as .1
−−d In addition, the timer interrupt is

generated at t2 and the third quantum of flow f traffic is
transmitted at .2

+t The delay between t2 and +
2t is ,2

+d and
it is also as large as .1

−−d
When the second quantum of flow f traffic arrives at the

downstream scheduler, it may find that the first quantum of
flow f traffic is still queued there. The interval between the
arrival of the first quantum and the arrival of the second
quantum of flow f traffic at the downstream scheduler is

,11
+− + dd and it has an upper bound of 2T. However, the

lower bound is not determined. It could be very small, almost
zero. The interval between the arrival of the first quantum and
the second interrupt is ,1 Td +− and it is larger than T. This
means that before the second interrupt, the downstream
scheduler transmits at least a quantum of flow f traffic. Thus,
the third quantum of flow f traffic can not see the first quantum
queued in the downstream scheduler. The interval between the
arrival of the first quantum and the i-th interrupt is

() .11 Tid −+− The amount of traffic arriving in the
downstream scheduler until the i-th interrupt is fiQ. at
maximum. This gives the lower bound to the amount of traffic
transmitted from the downstream scheduler when the i-th
interrupt is generated in the upstream scheduler. That is,
() 2,.1 ≥− ifQi . So, when the interrupt is generated in the
upstream scheduler, the amount of traffic queued in the
downstream scheduler can reach up to .. fQ After the
interrupt in the upstream scheduler, another quantum of flow f
traffic can be transmitted to the downstream scheduler. Thus,
the amount of traffic which can be queued in the downstream
scheduler is limited to twice the quantum, or ..2 fQ Therefore,
the maximum latency of flow f traffic in the downstream
scheduler is ,2 max downrLT + where downr is the transmission
rate of the downstream scheduler.

We can increase the number of flows sharing the flowmeter
in the downstream scheduler. The amount of traffic of
aggregate flow g queued in the downstream scheduler is
denoted as W.g, and it has the upper bound of the sum of twice
the quantum of each constituent flow;

..2.2.2.2. gTRfRTfTRfQgW
gfgfgf

===≤ ∑∑∑
∈∈∈

The upper bound is equivalent to twice the quantum of the
aggregate flow. Therefore, the queued traffic experiences a
delay of twice the timer interrupt interval plus the transmission
delay of a maximum-size packet. We can ignore the last term,
especially when the link speed is fast. Thus, each constituent
flow is guaranteed to have 2T of the delay bound and R.g of the
throughput in the downstream scheduler.

ETRI Journal, Volume 26, Number 4, August 2004 Kicheon Kim 357

On the other hand, the delay bound achieved by our
aggregation packet scheduler is larger than the delay bound of
the per-flow packet scheduler. This is due to a kind of boundary
behavior. Two quanta of traffic belonging to a flow can be
queued in the downstream scheduler before other constituent
flows send packets to the downstream scheduler. Therefore, we
name this queuing behavior caused by the flow aggregation as
double queuing, and the delay behavior due to double queuing
is studied in the next section. �

The proposed flow aggregator can be defined as a single-stage
aggregator, compared to Cobb’s scheduler network model of Fig.
1 where there are an aggregator and non-aggregating scheduler
at a node performing flow aggregation. This difference can be
compared using an example network as shown in Figs. 7(a) and
7(b). There are five nodes along the routing path of flow f. Flows
f and g are aggregated into flow h. Figure 7(a) shows flow
aggregation using the proposed single-stage scheduler. Figure
7(b) shows flow aggregation using Cobb’s two-stage scheduler
network. We use a rate controlled round-robin scheduler for the
aggregator and non-aggregating scheduler.

Fig. 7. (a) Flow aggregation by a single-stage scheduler, (b) Flow
aggregation by a two-stage scheduler.

f

g

f

g

h f

g

a a

f
b

(a)

f

g

h f

g

a
b

b

h

(b)

With the single-stage flow aggregator shown in Fig. 7(a), the
flow aggregation takes place in the down stream scheduler. The
maximum delay of periodic packet flow f after the second node
is 3T. The delay bound at the first node is T, and the delay
bound at the second node is 2T according to the theorem above.

With the two-stage flow aggregator shown in Fig. 7(b), the
flow aggregation takes place in the first node. The delay at the
first aggregator of the first node is zero because the output link
of the first aggregator is regarded as infinitive. The first
aggregator is implemented by software, but it makes the
programming tricky. Furthermore, a hardware-based scheduler

is not so flexible to reflect the change of the established flows.
The delay bound at the non-aggregating scheduler of the first
node is 2T according to the theorem above. After being rate
controlled, the delay bound at the second node becomes T.
Therefore, the maximum delay of periodic packet flow f after
the second node is 3T.

Both flow aggregators give comparable delay bounds. The
proposed single-stage aggregator does not require changing the
scheduler or router architecture. This is the same as the
scheduler which does not support flow aggregation. Thus, we
can introduce QoS features and flow aggregation with the
existing routers. We can also use flow aggregation with a
hardware-based scheduler without any modification. However,
the benefits of flow aggregation are all maintained.

At the fourth node, flow separation takes place. Before the
flow aggregation with another flow, a, flow f is rate controlled.
Thus, any change in the inter-packet delay picked up along the
routing path does not affect the delay bound of the other
constituent flow in both cases in Figs. 7(a) and 7(b).

VI. Simulation

In order to show the effectiveness of our rate control scheme
for the QoS guarantees, we present a simulation study for the
network shown in Fig. 5.

We have two different types of real-time traffic, video and
audio. We assume a real-time video traffic of 25 video frames
per second at a 932.8 kb/s rate and a real-time audio traffic of
42.4 kb/s. The audio traffic is equivalent to traffic transmitting
an ATM cell every 10 ms. The video traffic is equivalent to
traffic transmitting 22 ATM cells every 10 ms. The video traffic
is generated every 40 ms and the audio traffic every 10 ms. The
video traffic arrives in a burst and is rate-controlled by the timer
interrupts occurring every 10 ms. When the audio traffic is
multiplexed with the video traffic, the audio traffic is affected
by the video traffic and shows a delay variation. This is the
main point of the simulation study.

The output link of the upstream scheduler is relatively faster
than that of the downstream scheduler. In the simulation, we
chose a 100-Mbps link between the upstream and downstream
schedulers. The output link speed of the downstream scheduler
is selected as 2.12 Mbps. This speed is selected so that 90% of
the channel bandwidth is reserved for real-time traffic. This
link is relatively slow and could be a wireless link. The cell rate
of the link is 50 cells per 10 ms. In Fig. 5, flows f and e are
video traffic, and flow h is audio traffic.

Without the rate control scheme, the audio traffic experiences
a varying delay in the downstream scheduler as shown in Fig.
8. With the rate control scheme, the traffic to the downstream
scheduler is regulated so that the influence to the audio traffic

358 Kicheon Kim ETRI Journal, Volume 26, Number 4, August 2004

Fig. 8. Queuing delay of an aggregate flow.

without rate control
with rate control
double queuing

35

30

25

20

15

10

5

0

Q
ue

ui
ng

 d
el

ay
 (m

s)

1 3 5 7 9 11 13 15 17 19
Packet number

Fig. 9. Queueing delay at various traffic loads.

Average queuing delay

Maximal queuing delay

16

14

12

10

8

6

4

2

0

Q
ue

ui
ng

 d
el

ay
 (m

s)

0 10 20 30 40 50 60 70 80 90
Traffic load (%)

by the video traffic is decreased. The maximum delay of the
audio traffic is theoretically 20 ms, but in our simulation the
delay is below 10 ms. Improvement in the delay behavior is
dramatic and the playback application at the destination hardly
experiences a lack of data.

We assume a periodic generation of the traffic for the
simulation. Therefore, by changing the offset time of the traffic,
we could make double queuing take place as shown in Fig. 8.
Due to double queuing, the delay can be larger than 10 ms.
However, the time window for double queuing is very small.
Only when traffic is generated near the timer interrupt does
double queuing take place. A more statistical behavior of
double queuing is studied by another simulation.

For the network shown in Fig. 5, each stream of traffic is
generated by an exponentially distributed random variable. The
quantum of each queue is set to 90% of the link speed of the
downstream scheduler. Thus, the quanta of flows f, h, and e are
9328, 424, and 9328, respectively. The average packet
generation interval for each traffic is 10 ms. Simulation runs are
performed for 10 seconds at each traffic load. The queuing
delays get stable after a few seconds of simulation runs. As
shown in Fig. 7, the maximal queuing delay of flow g in Fig. 5
exceeds 10 ms due to double queuing. We noticed that the
maximal queuing delay at a 90% load is smaller than the
maximal delays at loads of 50 through 80%. This is because at
a 90% traffic load the upstream queues always have packets.
Thus, flows f and g are served by turns, and this reduces the
frequency of double queuing and lowers the maximal queuing
delay. Meanwhile, the average queuing delay of flow g
increases proportionally to the traffic load. We can reduce the
maximal queuing delay by reducing the time window for
double queuing. This will be our future work.

VII. Conclusion

In this paper, we introduced periodic timer interrupts to
control the rate of a real-time flow and to modify a round-robin
scheduler to be synchronized to the timer interrupt for
providing each flow with the reserved rate and delay bound.
Real-time flows are merged to form an aggregate flow in the
downstream scheduler, reducing the network states. The
theoretical delay bound of each constituent flow is 2T at the
immediate downstream scheduler. The simulation study shows
that the rate control is a good method to limit the queued traffic
and delay at the immediate downstream scheduler. We can
provide real-time flows with QoS guarantees economically
through a standardization of packetization and the timer
interrupt period.

Given that our flow aggregation does not require a separate
aggregator and non-aggregating scheduler at a router, flow
aggregation with only a single-stage scheduler is beneficial
especially with a hardware-based scheduler and large-scale
scheduler such as Bin Sort Fair Queuing. The proposed single-
stage flow aggregation can be implemented with a sorted-
queue scheduler as well. It will be interesting to compare the
delay behaviors of the single-stage flow aggregator of the
sorted-queue scheduler to Cobb’s flow aggregator.

Another important aspect of our contribution is that a rate
controlled round-robin scheduler is easy to implement and
provides a delay bound and flow aggregation without a
change of the current router architecture. Thus, it can help
the QoS mechanism deployed earlier, though it is not in the
best form.

ETRI Journal, Volume 26, Number 4, August 2004 Kicheon Kim 359

References

[1] John B. Nagle, “On Packet Switches with Infinite Storage,” IEEE
Trans. on Comm., 1994, pp. 435-438.

[2] Lixia Zhang, “VirtualClock: A New Traffic Control Algorithm for
Packet Switching Network,” ACM SIGCOMM, 1990, pp. 19-29.

[3] Abhay K. Parekh and Robert G. Gallager, “A Generalized
Processor Sharing Approach to Flow Control in Integrated
Services Networks: The Single-Node Case,” IEEE/ACM Trans.
on Networking, vol.1, no.3, 1993, pp. 344-357.

[4] S. Jamaloddin Golestani, “A Self-Clocked Fair Queuing Scheme
for Broadband Applications,” IEEE INFOCOM, 1994, pp. 636-
646.

[5] Norival R. Figueira and Joseph Pasquale, “An Upper Bound on
Delay for the VirtualClock Service Discipline,” IEEE/ACM Trans.
on Networking, vol.3, no.4, 1995.

[6] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using
Deficit Round Robin,” ACM SIGCOMM, 1995, pp. 231-242.

[7] Jon C. R. Bennett and Hui Zhang, “WF2Q: Worst-case Fair
Weighted Fair Queuing,” IEEE INFOCOM, 1996, pp. 120-128.

[8] Kicheon Kim and David Hutchison, “Flowmeter for QoS
Provision in Packet Switched Network,” IEE Electronics Lett.,
vol.34, no.1, 1998, pp. 21-22.

[9] Salil S. Kanhere and Harish Sethu, “Fair, Efficient and Scalable
Scheduling Without Per-Flow State,” IEEE Int’l Conf. on
Performance, Computing, and Comm., 2001, pp. 181-187.

[10] Jorge Arturo Cobb, “Preserving Quality of Service Guarantees in
Spite of Flow Aggregation,” IEEE/ACM Trans. on Networking,
vol.10, no.1, 2002, pp. 43-53.

[11] Michael G. Hluchyj and Mark J. Karol, “Queuing in High-
Performance Packet Switching,” IEEE J. on Selected Areas in
Comm., vol.6, no.9, 1988, pp. 1587-1597.

[12] S. Moon, J. Rexford and K. Shin, “Scalable Hardware Priority
Queue Architectures for High-Speed Packet Switches,” IEEE
Trans. on Computer, vol.49, no.11, 2000, pp. 1215-1227.

[13] P. Kuacharoen, M. Shalan, and V. Mooney, “A Configurable
Hardware Scheduler for Real-Time Systems,” Int’l Conf. on Eng.
of Reconfigurable Systems and Algorithms (ERSA’03), 2003, pp.
96-101.

[14] Shun Y. Cheung and Corneliu S. Pencea, “BSFQ: Bin Sort Fair
Queuing,” IEEE INFOCOM, 2002, pp. 1640-1649.

[15] Huirong Fu and Edward W. Knightly, “A Simple Model of Real-
Time Flow Aggregation,” IEEE/ACM Trans. on Networking,
vol.11, no.3, 2003, pp. 422-435.

Kicheon Kim received the BS from Hanyang
University, Seoul, Korea, in 1987 and the MS
from the Korea Advanced Institute in Science
and Technology (KAIST) in 1989. He received
the PhD degree from Lancaster University,
Lancaster, UK, in 1997. He worked in
Electronics and Telecommunications Research

Institute (ETRI) as a Member of Research Staff from 1989 to 1994.
From 1999 to 2002, he was the President of FlowTec, a venture
company in the area of QoS and contents sales in the Internet. He has
been working as a Member of Faculty Staff in Ajou University, Suwon,
Korea since 2002. He is interested in supporting realtime traffic in the
Internet.

