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Flow aggregation is a scalable method to provide quality 
of service (QoS) guarantees to a large number of flows 
economically. A round-robin scheduler is an efficient 
scheduling algorithm. We investigate flow aggregation 
using a round-robin scheduler and propose the use of 
periodic timer interrupts for rate control of the round-
robin scheduler. The proposed flow aggregator is a single-
stage scheduler compared to Cobb’s two-stage flow 
aggregator consisting of an aggregator and non-
aggregating scheduler. It is possible to implement flow 
aggregation in the existing routers with only a software 
upgrade. We also present a simulation study showing the 
delay behaviors of the proposed algorithm. 
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I. Introduction 

When fair queuing [1] was first introduced for providing a 
delay bound and reserved rate to real-time traffic, the packet 
scheduler worked on a per-session or per-flow basis. A series of 
fair queuing algorithms were devised improving efficiency and 
fairness [2], [3]. Fair queuing was proposed for the integrated 
services (IntServ) quality of service (QoS) mechanism in the 
Internet standards. However, as the link speed increases, the 
number of flows sharing a link also increases proportionally. 
So, per-flow packet scheduling has become uneconomical for 
high-speed links. The Internet standard introduced 
differentiated services (DiffServ) to improve scalability of the 
packet scheduling algorithm, and flow aggregation was 
proposed as an efficient solution to reduce the number of 
network states related to packet scheduling. 

This paper is about flow aggregation for an affordable QoS 
solution. We think that the Internet QoS should be deployed 
from a simple QoS mechanism for loose real-time applications 
such as internet TV broadcasting and internet cyber education 
and gradually upgraded. We expect to use flow aggregation 
with a round-robin scheduler as the first phase of QoS 
deployment. The proposed flow aggregation is slightly 
different from the existing flow aggregation method and is 
suitable for a hardware-based scheduler or large scale 
schedulers based on approximation. 

In section II, we present a brief introduction to fair queuing 
and flow aggregation. Section III shows a packet transmission 
experiment which gives a notion on traffic control timing 
granularity. Section IV presents a round-robin packet scheduler 
with rate control. In section V, we investigate the delay bounds 
of the constituent flows of the proposed aggregating scheduler. 
Section VI shows a simulation study on the delay behaviors of 
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the packet scheduler devised in this paper. In section VII, we 
draw our conclusion. 

II. Fair Queuing and Flow Aggregation 

When fair queuing was first introduced [1], it was a round-
robin scheduler serving multiple packet queues in a circular 
order. It was expected to provide firewalls between real-time 
traffic and guarantee a reserved rate to each real-time traffic 
flow. However, the round-robin scheduler was not further 
developed for some time. 

Instead, another type of scheduler was introduced, called 
VirtualClock [2]. The main contribution of VirtualClock was 
that it provided hints on the delay bounds of real-time packet 
flows by sorting packets according to the virtual clock stamp 
on the packets. The virtual clock stamp is now widely 
understood as the virtual finish time of a fluid server at the 
reserved rate. It takes fRifL ...  to serve the packet from the 
service start time, where ifL ..  is the length of packet i of 
flow f, and fR.  is the reserved rate of flow f. The service start 
time of the first packet of each flow is the arrival time of the 
first packet. The service start time of the successive packet is 
then obtained by taking the larger value between the virtual 
finish time of the previous packet and the packet arrival time. 
The packet queue is sorted in the increasing order of the virtual 
finish time of each packet. So, we can classify this type of 
scheduler as a sorted-queue scheduler. The delay bound of the 
VirtualClock scheduler was derived later [4] and is equivalent 
to the virtual finish time of each packet. 

A theoretical analysis of the fair queuing scheduler was first 
presented in generalized processor sharing (GPS) [3]. GPS is 
also a sorted-queue scheduler and similar to VirtualClock in 
many ways, but it is different in regard to virtual finish time 
calculation. The virtual finish time is obtained by simulating a 
fluid server. The scheduler serves each backlogged flow by the 
weighted share. The virtual time of the system should be 
recalculated at every change in the backlogged flows. When 
the flows are serviced at a rate faster than the reserved rate, the 
system virtual time gets faster than the real time. One possible 
drawback of this type of scheduler is a lack of capability for the 
rate control of each flow. 

Self clocked fair queuing (SCFQ) [4] is also a sorted-queue 
scheduler similar to GPS and was suggested as a method to 
obtain the system virtual time from the virtual finish time of the 
packet receiving service. This scheduler is more efficient than 
GPS. So, it is suitable for a high speed link but provides larger 
delay bounds than VirtualClock or GPS. 

Worst-case fair weighted fair queuing (WF2Q) [7] is also a 
sorted-queue scheduler and additionally performs rate control 
by inhibiting the transmission of the packet until the virtual 

finish time of the previous packet. The first packet of a flow 
does not need rate control. This rate control reduces the 
demand for the buffer in the downstream router. This can 
eliminate the packet loss due to a buffer shortage in the 
downstream router. 

The next step was an introduction of flow aggregation. The 
basic idea of flow aggregation is binding multiple flows into a 
single aggregate flow. The aggregate flow is treated as a single 
flow in packet scheduling. A packet scheduling method 
utilizing flow aggregation was presented in Aggregated Flow 
Fair Queuing (AFFQ) [9]. Later, a thorough theoretical 
analysis on flow aggregation was presented by Cobb [10]. He 
showed that quality of service guarantees can be preserved in 
spite of flow aggregation. 
 

 

Fig. 1. Scheduler network for Cobb’s flow aggregation. 
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Figure 1 shows Cobb’s flow-aggregation network model. An 
aggregator is a packet scheduler similar to a WF2Q scheduler. 
Flows e and g are aggregated into flow d by an aggregator. 
Flows c and d need not be aggregated if the two flows are 
forwarded into different directions at the immediate 
downstream router. So, flows d and e are scheduled into a 
single link, but not aggregated. This means that a two-stage 
scheduler network is necessary at a router as shown in Fig. 1. 
This brings about an additional delay. The delay of flow g at the 
aggregator is ,... gRigL  and an additional delay at the non-
aggregation scheduler is ( )..... eRgRigL + The aggregator 
should perform a tight rate control such as WF2Q. Otherwise, 
any flow serviced at a faster rate than the reserved rate can cause 
an unexpected large delay at the following scheduler because 
the scheduler guarantees only the reserved rate, 

.... eRgRdR +=  The separator does not cause any additional 
delay. Cobb’s flow aggregation is implemented by simulating 
the scheduler network as shown in Fig. 1. This requires high 
flexibility in the scheduler design. However, while the fair 
queuing schedulers are fast, they are not so flexible in 
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supporting a two-stage scheduler network. For these schedulers, 
we may need to change the flow aggregation method. 

There are many different types of round-robin schedulers, 
but DRR is the first round-robin scheduler analytically studied 
[5]. Compared to a sorted-queue scheduler, a round-robin 
scheduler is much more efficient. The computing complexity 
of a sorted-queue scheduler is O(log N) where N is the number 
of flows. However, the computing complexity of a round-robin 
scheduler is O(1). However, the delay behavior is better with a 
sorted-queue scheduler. The DRR scheduler is characterized by 
round size, T. The amount of traffic which a DRR scheduler is 
allowed to transmit each round is called quantum ,. fQ  and 
defined as the product of the round size and reserved rate; 

... fTRfQ =  Thus, the delay bound of a DRR scheduler is 
larger than or equal to T. A sorted-queue scheduler can give 
smaller delay bounds than a DRR scheduler. However, at the 
early stage of QoS deployment an efficient round-robin 
scheduler can be deployed. In this case, flow aggregation for a 
round-robin scheduler should be considered. 

Another important research about fair queuing is on the 
hardware-based packet scheduler [12], [13]. The performance 
of the software implementation of fair queuing algorithms 
may be limited. However, in hardware implementation, 
massive parallelism is employed for improving the sorting 
performance using a concurrent comparison. However, a 
hardware-based scheduler is not so flexible in adjusting the 
scheduler to perform a frequent establishment and release of 
flows. Flow aggregation makes the situation even worse. 
There is also a problem in the speed of deployment of QoS 
mechanisms in the Internet. We can not deploy such 
mechanisms all at once, but must gradually upgrade. We 
think that QoS mechanisms should be deployed by upgrading 
the existing routers in the current Internet from the entry level 
QoS. Our first requirement is an affordable solution for loose 
real-time services such internet TV broadcasting and cyber 
education services, which do not require tight interactivity. 
We defined this type of QoS as the entry level QoS guarantee. 
The scheduler should be very simple, and the number of 
flows can be minimized by flow aggregation. We combine a 
round-robin scheduler and flow aggregation for this purpose. 
Our work starts with simple experiments described in the 
following section. 

III. Traffic Control Timing Granularity 

Our traffic control algorithm is based on an experiment on 
traffic control timing granularity. In the experiment, we tried to 
transmit packets from a computer every 5 ms. We programmed 
various computers to schedule the packet transmission process 
to transmit a packet and then sleep for the remaining 5 ms. 

However, it was impossible to achieve a finer granularity than 
10 ms in the packet transmission interval. Two packets were 
transmitted every 10 ms on some computers such as Sun 
workstations. There were also computers transmitting four 
packets every 20 ms as shown in Fig. 2. This is because most 
computers use periodic timer interrupts to maintain their clocks. 
Thus, the packet transmission process wakes up every 10 ms. 
The conventional processor is not suitable for achieving a 
precise timing granularity of less than 10 ms especially under a 
multitasking environment. 

However, we can devise a rate control mechanism with the 
periodic timer interrupts and a credit variable. With the rate 
control mechanism, a flow can transmit a packet only when the 
credit of the flow is larger than or equal to the packet size. 
Whenever the flow transmits a packet, the credit is decreased 
by the packet size. If the size of the packet is larger than the 
remaining credit, the flow is blocked and cannot transmit any 
more. The timer interrupt increases the credit to the product of 
the reserved rate, ,. fR  and the interrupt interval, T. This 
amount of information, ,. fTR  is defined as quantum .. fQ  
Each packet should not be larger than the quantum size, or it is 
discarded. 
 

 

Fig. 2. Inter-packet delay with a 5-ms desired delay. 
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IV. Packet Scheduler 

We have presented a packet scheduler based on the data 
structure of traffic-related variables [8]. The data structure was 
named as the flowmeter. The flowmeter-based packet 
scheduler is shown in Fig. 3. Now, we combine the rate control 
mechanism of the previous section with the packet scheduler 
similar to the DRR [3]. 

In case there are multiple flowmeters for a link, it is not 
efficient to update the credit variables of all the flowmeters every 
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Fig. 3. A flowmeter-based packet scheduler with timer interrupts.
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time the timer interrupt is generated. Instead, each flowmeter has 
a clock variable, last_event_time. When we need to 
calculate the credit of a flowmeter, this clock variable is 
compared to current_time, which is the master clock 
variable of a link and counts the number of timer interrupts. If the 
two clock variables are different, the credit is refreshed to the 
quantum of the flowmeter, and last_event_time is set to 
current_time. With this scheme, we can calculate the credit 
of a flowmeter only when it is required. Thus, the packet 
scheduler can control the rates of multiple flows efficiently using 
the conventional processor. 

A flowmeter has head and tail pointers for a first-in first-out 
(FIFO) packet queue. The incoming packets are queued to the 
corresponding flowmeter. When there is no packet queued to a 
flowmeter, the flowmeter is idle. An idle flowmeter does not 
belong to any list and is isolated. The initial state of a 
flowmeter is also idle. When a new packet arrives and the 
packet is not larger than the credit of the flowmeter, the 
flowmeter is appended to the ready list as shown in Fig. 3. If 
the packet is larger than the credit, the flowmeter is appended 
to the block list. These two lists are of the FIFO service 
discipline. 

When the current flowmeter of a link is empty, the server 
picks up the top flowmeter from the ready list and compares 
the last_event_time of the flow-meter to the system 
clock time, current_time. If the two clocks are different, 
the credit is refreshed to the quantum stored in the flowmeter 
and the last_event_time of the flowmeter is changed to 
the system clock time. Then, the server transmits packets from 
the flowmeter while there is enough credit. When there is not 
enough credit, the flowmeter is appended to the block list. The 
interrupt from the timer increases the system clock time and 
moves all the flowmeters in the block list to the ready list. In 
order to save time, the two lists are concatenated, not actually 
moving the flowmeters one by one. 

We can increase the credit when we move the flowmeters 
from the block list to the ready list. However, this can make the 

timer interrupt service routine very time-consuming. Thus, we 
calculate the credit when the flowmeter is picked up as the 
current flowmeter. Once the current flowmeter is picked up, the 
flow is allowed to transmit packets as long as there is enough 
credit. Each time a packet is transmitted, the credit decreases by 
the packet size. If there is no packet in the flowmeter, it 
becomes idle and the server picks up the next flowmeter from 
the ready list. 

One delicate problem of this credit operation is the boundary 
behavior. This is when the timer interrupt is generated while a 
flow is being served. In general, a flowmeter is appended to the 
block list when a quantum of traffic for the flowmeter is 
transmitted and the flow is waiting for a timer interrupt. In this 
case, the last_event_time of the flowmeter and 
current_time of the link are the same. If these two clocks 
are different, we define this as the boundary behavior and the 
flowmeter is appended to the ready list instead of the block list. 
When the timer interrupt is generated, all the flowmeters in the 
block list are already moved to the ready list before the 
boundary flow completes the transmission of packets. Even 
though the flowmeter is appended to the ready list, all the other 
flows can be served within the timer interrupt interval, T. 
Therefore, there is no problem to guarantee the reserved rate of 
each flow, but the rate of the boundary flow can reach up to 
twice the reserved rate. This can cause queuing of the traffic in 
the downstream scheduler and increase the theoretical delay 
bound. We will discuss more about the theoretical delay bound 
in the next section. 

A finite state machine representation of the packet scheduler is 
shown in Fig. 4. In this way, we can provide delay bounds and a 
 

 

Fig. 4. A finite state machine representation of the packet scheduler.

idle 

ready

arr, credit+

tx, credit-,
clock+ 

interrupt 

pick 

block

tx, packet-

tx, credit-,
clock= 

arr, credit-

tx, credit+

arr: packet arrival 
tx: transmit a packet 
pick: picked up by the server 
interrupt: timer interrupt generated 
packet-: no packet 
credit+: enough credit 
credit-: not enough credit 
clock+: clocks are different 
clock=: clocks are the same 

current 

 



ETRI Journal, Volume 26, Number 4, August 2004  Kicheon Kim   355 

rate control function to real-time flows. Our packet scheduler 
requires a computing complexity of O(1) and serves all the flows 
at least once every timer interrupt interval, T. The resource 
reservation should meet the rate admission control condition, 

,.∑ ≤
f

CfR  where C is the outgoing link capacity. 
The next step is about how to implement flow aggregation 

with the proposed round-robin scheduler. We considered a 
different network model from Cobb’s flow aggregation. In 
Fig. 5, flows f and g are two separate flows in the upstream 
scheduler, but these two flows are aggregated and share the 
input and output links in the downstream scheduler. The two 
flows also share the same FIFO queue in the downstream 
packet scheduler. In this way, we can reduce the number of 
flows in the downstream scheduler and implement flow 
aggregation without using a two-stage scheduler network of 
Cobb’s flow aggregation. One of the important advantages of 
our flow aggregation model is that the aggregator is not 
required in the upstream scheduler. Flow separation is 
performed by the switch fabric before the packet scheduler. By 
applying the proposed rate-control scheme in the upstream 
scheduler, we can achieve a delay bound in the downstream 
scheduler. An analysis on the delay bound is presented in the 
next section. 

We can devise two different protocol solutions for supporting 
flow aggregation. First, we can consider IP tunneling. This is a 
term for encapsulating the packets of flows f and h with an 
additional common IP header when the packets leave the 
upstream scheduler. The two flows are then naturally treated as 
a single flow in the downstream scheduler. For flow separation, 
the packets are de-capsulated from the additional IP header 
when they leave the router. Then the two flow packets have 
different IP headers. Thus, they are treated as two different 
flows in the downstream router. One possible drawback of this 
IP tunneling scheme is the protocol overhead caused by the 
additional IP header. 

Second, we can consider label switching. Assume a flow 
label consists of virtual path identifier (VPI) and virtual channel 
identifier (VCI) fields. The VPI of flow f is 0 and the VPI of 
 

 

Fig. 5. Proposed flow aggregation network model. 
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flow h is 1 in the upstream scheduler. The labels of the packets 
of the two flows are changed in the upstream router and the 
two flows are rate controlled as shown in Fig. 5. These two 
flows can have the same VPI value in the downstream 
scheduler, though the VCI values are different for flow 
separation in the further downstream routers. The downstream 
scheduler performs queuing and scheduling based on VPI. 
Therefore, the two flows are treated as a single flow. Currently, 
the Internet does not support label switching, but multiprotocol 
label switching (MPLS) is being widely studied for the future 
Internet. 

V. Delay Bound 

We are interested in achieving deterministic delay bounds of 
the constituent flows in the down stream scheduler shown in 
Fig. 5. In the upstream scheduler, flows f and h are two separate 
flows. In the downstream scheduler, the two flows share the 
input and output links and the packet queue. The two flows 
form an aggregate flow, g, in the downstream scheduler. This 
means that the two flows are heading to the same further 
downstream scheduler, which is connected to the output link of 
the downstream router. Flows f and h are constituent flows of 
flow g. Flow g is not a constituent of any other flow. Therefore, 
we say that flow g is a root flow. Flows f and h are root flows in 
the upstream scheduler, too. 

The DRR scheduler guarantees the throughput of each root 
flow. However, the proposed rate-controlled round-robin 
scheduler is trickier. Therefore, we apply a few conditions in 
this paper. The amount of traffic served by the round-robin 
scheduler each round is determined by the quantum size, 

... fTRfQ =  Each packet should not be larger than the 
quantum size. If any packet is larger than the quantum, the 
packet can not be served because the credit of the flow is not 
accumulated after multiple rounds. Thus, a packet larger than 
the quantum is discarded. 

We have another condition in this paper. Because the packets 
are served in a FIFO manner, if there is a packet larger than the 
remaining credit, the packet can block the transmission of the 
following packets smaller than the remaining credit. We call 
this large packet blocking, and because of it, the reserved 
bandwidth can not be fully utilized. Therefore, the delay bound 
could get larger. If all the packets are of the same size, large-
packet blocking does not take place and we can achieve a tight 
delay bound. The ATM switching and transmission systems 
use a fixed-size packet, called an ATM cell. Therefore, a rate 
controlled round-robin scheduler is a good match with ATM. 
Thus, we will discuss the delay bound only for a fixed-size 
packet network in this paper. The rate controlled round-robin 
packet scheduler with a variable-size packet is still under study. 
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Theorem: A flow aggregator implemented with a rate 
controlled round-robin scheduler in a fixed-size packet network 
provides a delay bound of twice the round size at the 
immediate downstream scheduler. 

Proof: The upstream scheduler can transmit packets only 
while there is enough credit. Once the credit of a flow is 
refreshed, the flow can transmit up to a quantum of traffic. The 
interval between the first and second quantum of traffic varies 
from zero to twice the round size, or 2T. This can be explained 
by using the timing diagram of Fig.6. 
 

 

Fig. 6. Timing diagram. 
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Suppose that flow f is the only flow consisting of aggregate 
flow g and has just been established through the upstream and 
downstream schedulers as shown in Fig. 5, and that several 
quanta of flow f traffic arrives at the upstream scheduler at −−

1t  
as shown in Fig. 6. The last bit of the first quantum of flow f 
traffic is transmitted at .1

−t  We ignore the propagation delay 
between the upstream and downstream routers. Thus, as soon 
as the last bit of the first quantum of flow f traffic is transmitted, 
it arrives at the downstream scheduler. The propagation delay 
is constant and we can add the delay when it is necessary. The 
root flow is served at least once every round time, T. Therefore, 
the delay between −−

1t  and −
1t  is ,1

−−d  and it is upper 
bounded by the frame size, T, plus the transmission delay of a 
maximum size packet. The last term could be caused by the 
best-effort traffic. Thus, we have 

,max111 uprLTttd +≤−= −−−−−  

where upr  is the transmission rate of the upstream scheduler. 
After the transmission of the first quantum of flow f traffic, 

the flowmeter of flow f does not have enough credit to transmit 
the next quantum of traffic. Therefore, it is moved to the block 
list and waits for a timer interrupt. The first timer interrupt after 
the transmission of the first quantum of traffic is generated at t1. 
The waiting time between −

1t  and t1, ,1
−d  is less than the 

timer interrupt interval, T. The second quantum of flow f traffic 
is transmitted at .1

+t  The delay between t1 and +
1t  is ,1

+d  

and it is as large as .1
−−d  In addition, the timer interrupt is 

generated at t2 and the third quantum of flow f traffic is 
transmitted at .2

+t  The delay between t2 and +
2t  is ,2

+d  and 
it is also as large as .1

−−d  
When the second quantum of flow f traffic arrives at the 

downstream scheduler, it may find that the first quantum of 
flow f traffic is still queued there. The interval between the 
arrival of the first quantum and the arrival of the second 
quantum of flow f traffic at the downstream scheduler is 

,11
+− + dd  and it has an upper bound of 2T. However, the 

lower bound is not determined. It could be very small, almost 
zero. The interval between the arrival of the first quantum and 
the second interrupt is ,1 Td +−  and it is larger than T. This 
means that before the second interrupt, the downstream 
scheduler transmits at least a quantum of flow f traffic. Thus, 
the third quantum of flow f traffic can not see the first quantum 
queued in the downstream scheduler. The interval between the 
arrival of the first quantum and the i-th interrupt is 

( ) .11 Tid −+−  The amount of traffic arriving in the 
downstream scheduler until the i-th interrupt is fiQ. at 
maximum. This gives the lower bound to the amount of traffic 
transmitted from the downstream scheduler when the i-th 
interrupt is generated in the upstream scheduler. That is, 
( ) 2,.1 ≥− ifQi . So, when the interrupt is generated in the 
upstream scheduler, the amount of traffic queued in the 
downstream scheduler can reach up to .. fQ  After the 
interrupt in the upstream scheduler, another quantum of flow f 
traffic can be transmitted to the downstream scheduler. Thus, 
the amount of traffic which can be queued in the downstream 
scheduler is limited to twice the quantum, or ..2 fQ  Therefore, 
the maximum latency of flow f traffic in the downstream 
scheduler is ,2 max downrLT + where downr  is the transmission 
rate of the downstream scheduler. 

We can increase the number of flows sharing the flowmeter 
in the downstream scheduler. The amount of traffic of 
aggregate flow g queued in the downstream scheduler is 
denoted as W.g, and it has the upper bound of the sum of twice 
the quantum of each constituent flow; 

..2.2.2.2. gTRfRTfTRfQgW
gfgfgf

===≤ ∑∑∑
∈∈∈

 

The upper bound is equivalent to twice the quantum of the 
aggregate flow. Therefore, the queued traffic experiences a 
delay of twice the timer interrupt interval plus the transmission 
delay of a maximum-size packet. We can ignore the last term, 
especially when the link speed is fast. Thus, each constituent 
flow is guaranteed to have 2T of the delay bound and R.g of the 
throughput in the downstream scheduler. 
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On the other hand, the delay bound achieved by our 
aggregation packet scheduler is larger than the delay bound of 
the per-flow packet scheduler. This is due to a kind of boundary 
behavior. Two quanta of traffic belonging to a flow can be 
queued in the downstream scheduler before other constituent 
flows send packets to the downstream scheduler. Therefore, we 
name this queuing behavior caused by the flow aggregation as 
double queuing, and the delay behavior due to double queuing 
is studied in the next section.                          � 

The proposed flow aggregator can be defined as a single-stage 
aggregator, compared to Cobb’s scheduler network model of Fig. 
1 where there are an aggregator and non-aggregating scheduler 
at a node performing flow aggregation. This difference can be 
compared using an example network as shown in Figs. 7(a) and 
7(b). There are five nodes along the routing path of flow f. Flows 
f and g are aggregated into flow h. Figure 7(a) shows flow 
aggregation using the proposed single-stage scheduler. Figure 
7(b) shows flow aggregation using Cobb’s two-stage scheduler 
network. We use a rate controlled round-robin scheduler for the 
aggregator and non-aggregating scheduler. 
 

 

Fig. 7. (a) Flow aggregation by a single-stage scheduler, (b) Flow
aggregation by a two-stage scheduler. 
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With the single-stage flow aggregator shown in Fig. 7(a), the 
flow aggregation takes place in the down stream scheduler. The 
maximum delay of periodic packet flow f after the second node 
is 3T. The delay bound at the first node is T, and the delay 
bound at the second node is 2T according to the theorem above. 

With the two-stage flow aggregator shown in Fig. 7(b), the 
flow aggregation takes place in the first node. The delay at the 
first aggregator of the first node is zero because the output link 
of the first aggregator is regarded as infinitive. The first 
aggregator is implemented by software, but it makes the 
programming tricky. Furthermore, a hardware-based scheduler 

is not so flexible to reflect the change of the established flows. 
The delay bound at the non-aggregating scheduler of the first 
node is 2T according to the theorem above. After being rate 
controlled, the delay bound at the second node becomes T. 
Therefore, the maximum delay of periodic packet flow f after 
the second node is 3T. 

Both flow aggregators give comparable delay bounds. The 
proposed single-stage aggregator does not require changing the 
scheduler or router architecture. This is the same as the 
scheduler which does not support flow aggregation. Thus, we 
can introduce QoS features and flow aggregation with the 
existing routers. We can also use flow aggregation with a 
hardware-based scheduler without any modification. However, 
the benefits of flow aggregation are all maintained. 

At the fourth node, flow separation takes place. Before the 
flow aggregation with another flow, a, flow f is rate controlled. 
Thus, any change in the inter-packet delay picked up along the 
routing path does not affect the delay bound of the other 
constituent flow in both cases in Figs. 7(a) and 7(b). 

VI. Simulation 

In order to show the effectiveness of our rate control scheme 
for the QoS guarantees, we present a simulation study for the 
network shown in Fig. 5. 

We have two different types of real-time traffic, video and 
audio. We assume a real-time video traffic of 25 video frames 
per second at a 932.8 kb/s rate and a real-time audio traffic of 
42.4 kb/s. The audio traffic is equivalent to traffic transmitting 
an ATM cell every 10 ms. The video traffic is equivalent to 
traffic transmitting 22 ATM cells every 10 ms. The video traffic 
is generated every 40 ms and the audio traffic every 10 ms. The 
video traffic arrives in a burst and is rate-controlled by the timer 
interrupts occurring every 10 ms. When the audio traffic is 
multiplexed with the video traffic, the audio traffic is affected 
by the video traffic and shows a delay variation. This is the 
main point of the simulation study. 

The output link of the upstream scheduler is relatively faster 
than that of the downstream scheduler. In the simulation, we 
chose a 100-Mbps link between the upstream and downstream 
schedulers. The output link speed of the downstream scheduler 
is selected as 2.12 Mbps. This speed is selected so that 90% of 
the channel bandwidth is reserved for real-time traffic. This 
link is relatively slow and could be a wireless link. The cell rate 
of the link is 50 cells per 10 ms. In Fig. 5, flows f and e are 
video traffic, and flow h is audio traffic. 

Without the rate control scheme, the audio traffic experiences 
a varying delay in the downstream scheduler as shown in Fig. 
8. With the rate control scheme, the traffic to the downstream 
scheduler is regulated so that the influence to the audio traffic 
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Fig. 8. Queuing delay of an aggregate flow. 
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Fig. 9. Queueing delay at various traffic loads. 
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by the video traffic is decreased. The maximum delay of the 
audio traffic is theoretically 20 ms, but in our simulation the 
delay is below 10 ms. Improvement in the delay behavior is 
dramatic and the playback application at the destination hardly 
experiences a lack of data. 

We assume a periodic generation of the traffic for the 
simulation. Therefore, by changing the offset time of the traffic, 
we could make double queuing take place as shown in Fig. 8. 
Due to double queuing, the delay can be larger than 10 ms. 
However, the time window for double queuing is very small. 
Only when traffic is generated near the timer interrupt does 
double queuing take place. A more statistical behavior of 
double queuing is studied by another simulation. 

For the network shown in Fig. 5, each stream of traffic is 
generated by an exponentially distributed random variable. The 
quantum of each queue is set to 90% of the link speed of the 
downstream scheduler. Thus, the quanta of flows f, h, and e are 
9328, 424, and 9328, respectively. The average packet 
generation interval for each traffic is 10 ms. Simulation runs are 
performed for 10 seconds at each traffic load. The queuing 
delays get stable after a few seconds of simulation runs. As 
shown in Fig. 7, the maximal queuing delay of flow g in Fig. 5 
exceeds 10 ms due to double queuing. We noticed that the 
maximal queuing delay at a 90% load is smaller than the 
maximal delays at loads of 50 through 80%. This is because at 
a 90% traffic load the upstream queues always have packets. 
Thus, flows f and g are served by turns, and this reduces the 
frequency of double queuing and lowers the maximal queuing 
delay. Meanwhile, the average queuing delay of flow g 
increases proportionally to the traffic load. We can reduce the 
maximal queuing delay by reducing the time window for 
double queuing. This will be our future work. 

VII. Conclusion 

In this paper, we introduced periodic timer interrupts to 
control the rate of a real-time flow and to modify a round-robin 
scheduler to be synchronized to the timer interrupt for 
providing each flow with the reserved rate and delay bound. 
Real-time flows are merged to form an aggregate flow in the 
downstream scheduler, reducing the network states. The 
theoretical delay bound of each constituent flow is 2T at the 
immediate downstream scheduler. The simulation study shows 
that the rate control is a good method to limit the queued traffic 
and delay at the immediate downstream scheduler. We can 
provide real-time flows with QoS guarantees economically 
through a standardization of packetization and the timer 
interrupt period. 

Given that our flow aggregation does not require a separate 
aggregator and non-aggregating scheduler at a router, flow 
aggregation with only a single-stage scheduler is beneficial 
especially with a hardware-based scheduler and large-scale 
scheduler such as Bin Sort Fair Queuing. The proposed single-
stage flow aggregation can be implemented with a sorted-
queue scheduler as well. It will be interesting to compare the 
delay behaviors of the single-stage flow aggregator of the 
sorted-queue scheduler to Cobb’s flow aggregator. 

Another important aspect of our contribution is that a rate 
controlled round-robin scheduler is easy to implement and 
provides a delay bound and flow aggregation without a 
change of the current router architecture. Thus, it can help 
the QoS mechanism deployed earlier, though it is not in the 
best form. 
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