• Title/Summary/Keyword: Flow Acceleration

Search Result 432, Processing Time 0.031 seconds

Identification of venular capillary remodelling: a possible link to the development of periodontitis?

  • Townsend, David
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.65-76
    • /
    • 2022
  • Purpose: The present study measured changes in arteriolar and venular capillary flow and structure in the gingival tissues during the development of plaque-induced gingival inflammation by combining dynamic optical coherence tomography (OCT), laser perfusion, and capillaroscopic video imaging. Methods: Gingival inflammation was induced in 21 healthy volunteers over a 3-week period. Gingival blood flow and capillary morphology were measured by dynamic OCT, laser perfusion imaging, and capillaroscopy, including a baseline assessment of capillary glycocalyx thickness. Venular capillary flow was estimated by analysis of the perfusion images and mean blood velocity/acceleration in the capillaroscopic images. Readings were recorded at baseline and weekly over the 3 weeks of plaque accumulation and 2 weeks after brushing was resumed. Results: Perfusion imaging demonstrated a significant reduction of gingival blood flow after 1 and 2 weeks of plaque accumulation (P<0.05), but by 3 weeks of plaque accumulation there was a more mixed picture, with reduced flow in some participants and increased flow in others. Participants with reduced flux at 3 weeks also demonstrated venular-type flow as determined by perfusion images and evidence of the development of venular capillaries as assessed by the velocity/acceleration ratio in capillaroscopic images. After brushing resumed, these venular capillaries were broken down and replaced by arteriolar capillaries. Conclusions: After 3 weeks of plaque accumulation, there was wide variation in microvascular reactions between the participants. Reduced capillary flow was associated with the development of venular capillaries in some individuals. This is noteworthy, as an early increase in venous capillaries is a key vascular feature of cardiovascular disease, psoriasis, Sjögren syndrome, and rheumatoid arthritis-diseases with a significant association with the development of severe gingival inflammation, which leads to periodontitis. Future investigations of microvascular changes in gingival inflammation might benefit from accurate capillary flow velocity measurements to assess the development of venular capillaries.

Turbojet Engine Control using Fuzzy Inference Method (퍼지추론 기법에 의한 터보제트 엔진제어)

  • 지민석;이영찬;이강웅;기자영;공창덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1271-1274
    • /
    • 2003
  • In this paper we propose a turbojet engine controller based on fuzzy inference method. Fuel flow control input is designed by fuzzy inference in order to avoid surge and flame-out during acceleration and deceleration. Acceleration and deceleration demands are used as control commands, which can achieve effective performance without surge and flame-out.

  • PDF

Convergence Acceleration Methods for the Multigrid Navier-Stokes Computation (다중 격자 Wavier-Stokes 해석의 수렴성 증진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.35-38
    • /
    • 2002
  • The convergence acceleration methods for the compressible Wavier-Stokes equations are studied ,which are multigrid method and implicit preconditioned multistage time stepping method. In this paper, the performance of implicit preconditioning methods are studied for the full-coarsening multigrid methods on the high Reynolds number compressible flow computations. The effect of numerical flux on the convergence are investigated for the inviscid and viscous calculations.

  • PDF

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Effects of Flow Acceleration on Drag Force and Wake Field of 2D Circular Cylinder (유입 유동의 가속도가 2D 원형실린더의 항력 및 후류에 미치는 영향)

  • Son, Hyun A;Lee, Sungsu;Cho, Seong Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.507-514
    • /
    • 2019
  • Computational studies of accelerating flow around 2D Circular Cylinder was performed to investigate characteristics of wake field and drag forces. Previous studies had revealed that drag on the cylindrical body in accelerating flow is much greater than that in the flow with constant velocity; however, the underlying physics on the drag increase has not been clearly investigated. In order to investigate the drag increase and its relationship with wake development, this study employed a finite-volume based CFD code, Fluent 13.0 with k-ω SST model for turbulence effects. Inflows are modeled with varied accelerations from 0.4905 to 9.81m/s2. The drag computed in the present study is in good agreement with previous studies, and clearly shows the increase compared to the drag on the body in the flow with constant velocity. The results also show that drag crisis observed at high Reynolds number in the case of the flow with constant velocity is also found in the case of accelerating flow. The analysis for wake and recirculation length shows that conventional vortex shedding does not occur even at high Reynolds number and the drag increase is larger at higher acceleration.

DEVELOPMIN OF A MODIFIED $k-{\varepsilon}$ TURBULENCE MODEL FOR VISCO-ELASTIC FLUID AND ITS APPLICATION TO HEMODYNAMICS (점탄성 유체의 난류 해석을 위한 수정된 $k-{\varepsilon}$ 난류모델 개발 및 혈류역학에의 적용)

  • Ro, K.C.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.214-220
    • /
    • 2010
  • This article described that a high Reynolds number version of a turbulence model was modified by using drag reduction to analyze the turbulent flows of non-Newtonian fluid with visco-elastic viscosity and it was applied hemodynamics which was representative of visco-elastic fluid. The turbulence characteristics of visco-elastic fluid was expanded viscous sublayer region and buffer layer region by drag reduction phenomenon and also Newtonian turbulence models does not predict because viscosity was related with shear rate of fluid flow. Hence numerical simulation using a modified turbulence model was conducted under the same conditions that were applied to obtain the experiment results and previous turbulence models and then the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body.

  • PDF

Research for the Pulsating Pressure Characteristics by a Damper and an Accumulator in the High Frequency Hydraulic System (고주파 유압시스템에서 감치장치와 축압기에 의한 맥동 충격파 감쇄특성에 대한 연구)

  • Kim, Yang-Soo;Kim, Jae-Soo;Rho, Hyung-Woon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.641-647
    • /
    • 2004
  • Characteristics of the high frequency pulsatile flow have been investigated experimentally to understand the flow phenomena in the hydraulic system. The accumulator in high frequency hydraulic system but that is not effective all frequency zone. Therefore, a hydraulic damper used with accumulator is suggested to reduce the high frequency pulsatile where the accumulator is not effective. The pulsating pressure obtained by Pressure measurement system are analyzed to power spectral density distribution. According to the variations of pump input pressure and actuator acceleration frequency, the pressure is measured with or without an accumulator or pulsatile damper The amplitude of pressure with damper is very lower than those without accumulator or damper due to absorbing function of damper. As the frequency of actuator acceleration is increased, the effect of damper becomes very important to decrease the amplitude of pulsatile Pressure waveform with high frequencies.

  • PDF

Fluid Particle Dispersion in a Turbulent Channel Flow (난류 채널 유동에서의 유체 입자 분산)

  • Choi Jung-Il;Lee Changhoon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.803-806
    • /
    • 2002
  • The dispersion of Lagrangian fluid particles in a turbulent channel flow is studied by a direct numerical simulation. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted by assesing the acceleration of fluid particles. In order to characterize the inhomogeneous Lagrangian statistics, accurate single particle Lagrangian statistics are obtained along the wall normal direction. Integral time scales of Lagrangian velocity can be normalized by Eulerian mean shear stresses.

  • PDF

Velocity and Shear Stress Distributions for Steady and Physiological Flows in the Abdominal Aorta/lLIAC Artery Bifurcation (복부대동맥/장골동맥 분기혈관내 정상 및 박동성 유동의 속도와 전단응력분포)

  • 서상호
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • Steady and physiological flows of a Newtonian fluid and blood in the abdominal gorta/iliac artery bifurcation are numerically simulated to understand the etiology and pathogenesis of atherosclerosis. Distributions of velocity, pressure, and wall shear stress in the bifurcated arterial vessel model are calculated to investigate the differences of flow characteristics between steady and physiological flows and to compare flow characteristics of blood with that of a Newtonian fluid For the given Reynolds number the flow characteristics of physiological flows for a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from thcse of steady flows. No flow separation or flow reversal in the bifurcated region appears downstream of a stenosis during the acceleration phase. However, during the deceleration phase the flow exhibits flow separation in the outer walls of daugtlter branches, which extends to the entire wall region.

  • PDF

A Study of Artificial Reef Subsidence in Unsteady Flow Field (비정상 흐름장의 인공어초 침하특성에 관한 실험적 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.33-38
    • /
    • 2001
  • The subsidence characteristics of artificial reef (AFR) in the unsteady flow such as tidal flow were investigated. The scour and subsidence characteristics were confirmed in the steady flow field. In a main study, the interaction of "Flow - Sediment Movement - Structure Behavior" and scou $r_sidence mechanism were discussed int he unsteady flow field. AFR subsidence characteristics was discussed with Reynolds number(Re*), Shields number(Sn*), dimensionless acceleration of flow (af/g) and dimensionless time (t/T). Most of all, the continuous AFR subsidence from the scour was occurred by periodic behavior of AFR. This behavior is result from the asymmetric ground, and is influenced by maximum velocity, duration time and direction of flow.ow.

  • PDF