• Title/Summary/Keyword: Flooring coverings

Search Result 7, Processing Time 0.027 seconds

Experimental Study of Floor Impact Sound Insulation by the Finishing Materials and Porous Ratio of Insulations of Floor Structure in Mock-up Test Room (모형실험실에서 바닥충격음 완충재의 발포율 및 바닥마감재의 변화에 따른 충격음 차단성능에 대한 실험적 연구)

  • 김태희;오진균;신일섭;조창근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.756-759
    • /
    • 2003
  • It is increasing the interest on the comfortable dwelling environment and the efforts to solve the problem of the floor impact noise in apartment houses have been realized, as a result numerous products have been made. The purpose of this study is to investigate the sound insulation performances according to foaming rate of floor impact noise insulators and flooring coverings in Mock-up Test Room. The test results of impact insulation performance for each floor impact noise insulators is that double structure of insulator is excel than one in low-middle frequency band and as foaming rate go up, the sound insulation performance is improved.

  • PDF

Hazard Assessment of Combustion Gases from Interior Materials (주요 건축 내장재의 연소가스 유해성 평가)

  • Seo, Hyun Jeong;Son, Dong Won
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Toxic gases from five types of interior building materials were investigated according to Naval Engineering Standard (NES) 713. The materials were plywood, indoor wall coverings (wood wall plate members and pine wood), reinforced Styrofoam insulation, laminate flooring, and PVC. Specimens were measured using an NES 713 toxicity test apparatus to analyze the hazardous substances in combustion gas from the materials. We used the US Department of Defense standard (MIL-DTL, Military Standard) to calculate the toxicity index of the combustion gas. Emissions of $CO_2$ from all specimens did not exceed the NES 713 limit of 100,000 ppm. The amount of CO gas emissions from reinforced Styrofoam insulation was 6,098 ppm. 25 ppm and 49 ppm of formaldehyde were released from the reinforced Styrofoam insulation and PVC flooring, respectively. These values were less than the limit of 400 ppm. The highest emissions were from $NO_X$ emitted by plywood and were above the limit of 250 ppm. The toxicity index of the specimens were calculated as 5.19 for plywood, 4.13 for PVC flooring, 2.35 for reinforced Styrofoam insulation, 2.34 for laminate flooring, and 1.22 for indoor wall coverings (pine wood). Our research helps us to understand the properties of these five interior materials by analyzing the combustion gas and explaining the toxicity of constituents and the toxicity index. Also, it would be useful for giving fundamentals to guide the safe use of interior materials for applications.

A Pilot Study on Environmental Factors Contributing to Childhood Home Slip-Down Injuries (가정 내 낙상으로 인한 아동 손상의 유발 환경 인자에 관한 예비연구)

  • Ryu, Jeong-Min;Seo, Min Hoo;Kim, Won-Young;Kim, Won;Lim, Kyoung-Soo
    • Journal of Trauma and Injury
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate environmental factors contributing to childhood home slip-down injuries. Methods: Among a total of 2,812 injured children in our Customer Injury Surveillance System (CISS), we performed a prospective study on 262 children with home slip-down injuries who visited the pediatric emergency department of Asan Medical Center between March 2008 and February 2009. We made a frequency analysis on parameters such as activities just before the accident, the presence of any obstacles or lubricant materials, specific home place in the home where the injuries occurred, flooring materials on which the slip-down happened, additional objects hit after slip down, the site and kind of injury, the duration of therapy, and the disposition. Results: Walking was the most common activity just before the injury. Because rooms and bathrooms were most common places in the home for slip down injuries, laminated papers/ vinyl floor coverings and tiles were the most common flooring materials used in the places where the injuries occured. Most commonly, no obstacles caused the children to slip down, but the furniture, stairs, doorsills, wetness, or soapy fluid followed after that. Over half of the children who slipped (58%) also collided with other than the floor itself after the slip-down, most common objects hit were the edges of the furniture, and doorsills, followed by stairways. The head and neck were the most commonly injured sites, and a laceration was the most common kind of injury. Most children needed less than 1 week of therapy, only 4 children (1.53%) admitted. There were no mortalities. Conclusion: The environmental factors contributing to slip-down injuries were the bathroom, laminated papers/vinyl floors, the furniture, stairs, doorsills, and wetness or soapy fluid. Especially, the furniture, stairs, and doorsills can be both primary obstacles and secondary collision objects. For the safety of our children, we must consider these factors on housing, when decorating or remodeling our house.

A Study on the Linoleum of the Deoksugung and Changdeokgung Palaces in the Early 20th Century: focusing on its manufacturing process, characteristics, and usage (20세기 초 덕수궁·창덕궁에 유입된 리놀륨(Linoleum) 바닥재 연구: 리놀륨의 제작 방식과 특성 및 사용을 중심으로)

  • Choi, Jihye
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.18-31
    • /
    • 2021
  • Linoleum is a resilient, hygienic, and eco-friendly floor covering. It was developed in England by Frederick Walton in 1863. Made of cork flour, linseed oil, and burlap as its main materials, the flexible and waterproof linoleum became globally popular in the early 20th century. Unlike the vinyl coverings, the burlap-backed linoleum was used not only in commercial spaces but also in household areas like kitchens, bathrooms, and even living rooms. As a global product, linoleum was imported and used in Korean palaces like Deoksugung and Changdeokgung in the early modern period. According to the record Deoksugung Won-Ahn, linoleum was applied to the major buildings, including Hamnyeongjeon, Deokhongjeon, and Jeonggwanheon, and various other venues. The linoleum used in these places are mainly monochrome blue and brown color, which probably means that they are from England. The trade records in the early 20th century show that linoleum was imported mainly from England and America. The Ewangjik building floor plan in the Changdeokgung Palace shows that linoleum was used extensively. There are even some originals, which were laid in 1920 and left in the Changdeokgung Palace. When Daejojeon and Huijeongdang were rebuilt in 1920, the interior was outfitted with western features and linoleum was used in areas such as bathrooms, the tonsorial parlor, and one of the rooms on the west side of Huijeongdang. In situ in the Daejojeon and Huijeongdang areas in the Changdeokgung Palace are monochrome, patterned black, and stylized floral tile patterned, which are closely similar to American products made by ALC and Armstrong company. This study will help us better understand linoleum's characteristics, its uses and the material itself. It will also form the basis for the restoration of Changdeokgung Palace as well as other modern interiors with linoleum flooring in the future.

A Study on the Development of Design Guidelines for the Outdoor Play Settings in Child Care Center (아동보육시설의 실외놀이 환경 디자인지침 개발 연구)

  • Choi, Mock-Wha;Byun, Hea-Ryung
    • Korean Journal of Human Ecology
    • /
    • v.16 no.4
    • /
    • pp.855-875
    • /
    • 2007
  • The purpose of this study is to suggest a guideline for outdoor play settings in child care centers. From March to July, 2005, data were collected from 223 directors at child care centers through a structured questionnaire, field measurement survey and non-participatory observation in seventeen child care centers in Seoul and Daejeon. The statistical methods for analysing data were frequency, percentage, mean, $X^2$ and F-test. The results showed as follows: 1)the existing outdoor playground area in child care centers should be expanded more than $4\;m^2$ per child. 2) Outdoor play facilities should be equipped with two structured play sets, a play facility for unstructured play and an adventure facility to make child's various activities possible and to promote child development. 3)flooring materials for outdoor playground should be required to use more than three kinds such as solid coverings (cf. asphalt, standard concrete), wood, lawn, soil or sands. 4)to let children enjoy various activities, outdoor playground area should be composed of various play facilities like indoor play gyms and should be independent but have good connections between play facilities depending on characteristics of play activities. 5)Play spaces of outdoor playground should be composed of physical play space, unstructured and dramatized play space, rest space, space for nature and adventure space. In addition, appropriate play equipments should be provided in respective play space.

Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber (S/BA와 SBR을 혼입한 폴리머 시멘트 모르타르의 특성)

  • Mun, Kyung-Ju;Song, Hae-Ryong;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • Polymer-modified mortars have been largely used as paving materials, flooring, waterproofing material, adhesives, anticorrosive linings, deck coverings, and other various materials. The various types and properties of the mixed polymer largely affect the characteristics of polymer-modified mortar that has been mixed with polymer latexes. Consequently, its application purposes are varied according to these properties. This paper investigates the typical properties of polymer-modified mortars that contain styrene and butyl acrylate latexes and styrene butadiene rubber. They are then tested to obtain air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the superior flexural strength of polymer-modified mortars is obtained at a S/BA-2 and a polymer-cement ratio of 20%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the types of polymer. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete.