• Title/Summary/Keyword: Floor isolation

Search Result 141, Processing Time 0.027 seconds

Seismic Performance Evaluation for Piloti Structures of MPS Seismic Isolation Device in Response to Earthquakes on the Richter Scale 7.0 - Nonlinear Dynamic Analysis (리히터 규모 7.0의 지진에 대응하는 MPS 면진받침의 필로티 구조물에 대한 내진성능 평가 - 비선형 동적 해석)

  • Cho, Han-Min;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • Recently, various piloti structures have been constructed in Korea to secure residential and parking spaces. However, these piloti structures have been constructed in the form of protruding columns without walls to secure parking spaces on the first floor. In this form, when an earthquake occurs, the column is relatively easily damaged compared to general structures, and such damage can lead to the collapse of the structure. Therefore, in this study, a study on securing the safety of the piloti structure using the MPS (Multi Performance System) seismic isolation device was conducted. Nonlinear dynamic analysis according to the presence or absence of MPS seismic isolation device was performed on the existing piloti structure, and analysis results were compared and analyzed. Finally, each seismic performance evaluation was performed and the superiority of the MPS seismic isolation device was verified.

Evaluation of the Soil-structure Interaction Effect on Seismically Isolated Nuclear Power Plant Structures (지반-구조물 상호작용이 면진 원전구조물의 지진응답에 미치는 영향 평가)

  • Lee, Eun-haeng;Kim, Jae-min;Joo, Kwang-ho;Kim, Hyun-uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • This study intends to evaluate the conservativeness of the fixed-base analysis as compared to the soil-structure interaction (SSI) analysis for the seismically isolated model of a nuclear power plant in Korea. To that goal, the boundary reaction method (BRM), combining frequency-domain and time-domain analyses in a twofold process, is adopted for the SSI analysis considering the nonlinearity of the seismic base isolation. The program KIESSI-3D is used for computing the reaction forces in the frequency domain and the program MIDAS/Civil is applied for the nonlinear time-domain analysis. The BRM numerical model is verified by comparing the results of the frequency-domain analysis and time-domain analysis for the soil-structure system with an equivalent linear base isolation model. Moreover, the displacement response of the base isolation and the horizontal response at the top of the structure obtained by the nonlinear SSI analysis using BRM are compared with those obtained by the fixed-base analysis. The comparison reveals that the fixed-base analysis provides conservative peak deformation for the base isolation but is not particularly conservative in term of the floor response spectrum of the superstructure.

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

Vibration Isolation Method of Walking Space in the Multiplex Cinema (Multiplex 영화관의 보행면 진동방지 대책)

  • Lee, Sung-Ho;Jung, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.913-920
    • /
    • 2000
  • The hall and the projection room of the multiplex cinema being constructed on the sixth and seventh floors at Jeonpo-dong market, Pusan, is composed of structural beams and decks considering the structures self weight problem, and the following problems are expected: - Vibration and noise generated on the floors by moving audiences may annoy the audiences in the other hall - Vibration and noise generate on the floor of the nearby hall as the audiences walk through the alley near the projection room - Vibration and noise generate on the floor of the hall nearby the projection room as the film drops This study measured and reviewed the vibration amount of the seven representative transferring routes that were selected for the halls and the alley near the projection room. Based on the analysis, the model hall was constructed and the vibration in the hall was estimated after cutting the deck. Also, this study constructed the steel stairs and investigated the vibration transferring characteristics to decide whether to construct the steel stairs in the building. Finally, the results were evaluated by actually using the stairs and reviewed the appropriateness of the measurement.

  • PDF

Using Behavior of Corridor and Lounge at the Residence Floor in Skilled Nursing Facilities for the Elderly (노인전문요양시설 거주층의 복도 및 휴게홀 이용행태)

  • Lee Min-Ah;Ryu Ok-Soon
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.11
    • /
    • pp.31-45
    • /
    • 2004
  • The purpose of this study was to provide basic information about the facility planning to reduce elderly isolation and to improve their rehabilitation ability. Four re%archers observed the using behavior of the elderly residents in the corridor and lounge of 5 facilities. The results of the study were as follows. The using rate of the lounge wis higher than that of the corridor since most of the elderly were controlled by the staffs at the lounge. The facility could decrease the crowd of the lounge by arranging the sofa at the corridor-especially surrounding the atrium. The use rate in the lounge was very dependent on the time of the day, because its use was influenced mainly by daily schedule, and this resoled in it being largely inactive most of the time. A counter plan is needed to encourage natural interaction among the elderly. Individual or small group activities are required in addition to the regular programs. Since the furniture arrangements_(sofas and tables) at the corridor could induce elderly isolation and inactivity, various equipments should be arranged for the self-controlled activities. The indirect participation in the regular activities, which are usually conducted in the lounge, should also be considered in the corridor so that the elderly could observe them at any places.

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.

Peak seismic response of a symmetric base-isolated steel building: near vs. far fault excitations and varying incident angle

  • Pavlidou, Constantina;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.349-365
    • /
    • 2020
  • Since the peak seismic response of a base-isolated building strongly depends on the characteristics of the imposed seismic ground motion, the behavior of a base-isolated building under different seismic ground motions is studied, in order to better assess their effects on its peak seismic response. Specifically, the behavior of a typical steel building is examined as base-isolated with elastomeric bearings, while the effect of near-fault ground motions is studied by imposing 7 pairs of near- and 7 pairs of far-fault seismic records, from the same 7 earthquake events, to the building, under 3 different loading combinations, through three-dimensional (3D) nonlinear dynamic analyses, conducted with SAP2000. The results indicate that near-fault seismic components are more likely to increase the building's peak seismic response than the corresponding far-fault components. Furthermore, the direction of the imposed earthquake excitations is also varied by rotating the imposed pairs of seismic records from 0◦ to 360◦, with respect to the major construction axes. It is observed that the peak seismic responses along the critical incident angles, which in general differ from the major horizontal construction axes of the building, are significantly higher. Moreover, the influence of 5% and 10% accidental mass eccentricities is also studied, revealing that when considering accidental mass eccentricities the peak relative displacements of the base isolated building at the isolation level are substantially increased, while the peak floor accelerations and interstory drifts of its superstructure are only slightly affected.

Shaking Table Test of a 1/10 Scale Isolated Fifteen-story Flat Plate Apartment Building (면진층을 가지는 1/10 축소된 15층 무량판 아파트건물의 진동대 실험)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.287-297
    • /
    • 2011
  • This paper presents the results of performance verification tests of the isolated flat plate apartment building with the laminated rubber bearings. The shaking table test is carried out in CABR(China Academy of Building Research) with two 1/10 scale isolation and non-isolation models under 4 excitation waves. The shaking table test is proceeding from x axis, y axis and x+y axis with different amplitude of acceleration values. The results show that, to non-isolated model, the natural vibration period is remarkably decreased and entered non-linear condition after moderate earthquake. Its accelerations become lager with increasing storey number and completely collapsed under large earthquake. The inter-storey shifts largely exceed the limit values of regulated displacement angles. But to isolated model, the natural vibration period of isolated modal is almost the same in all conditions and still in its elastic condition. The earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. The inter-storey drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. The displacements of isolation layer are in the allowable range. This experiment demonstrates that the seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease the floor acceleration. facilities from their good states that is superior to non-isolated structure.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

The Exercise Protocol for Spinal Stabilization (척추 안정화를 위한 운동프로토콜)

  • Kim, Eui-Ryong;Lee, Gun-Chul
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.4
    • /
    • pp.61-74
    • /
    • 2008
  • Background: Purpose of this study is mat exercises and sling exercises that based on proceeding studies for exercising protocol for spinal stabilization. Methods: We analyze many other bibliographies and result of studies. Results: The vertebrae stabilization practices are formed on intra-abdominal pressure and converted into isolation of our body and limbs gradually through co-contraction training of transverse abdominis, pelvic floor muscle and diaphragm. Also, for prevention of low back pain and relapse, it is diverted to reflex muscle contraction training as well as functional integration. What is better, it should carry out with Activity of Daily Living. Conclusion: We should feel the necessity of it, more effective recognition training of local muscle for chronic low back pain patients. Besides, it is suggested that we should import measurable equipment and go hands with discipline.

  • PDF