• Title/Summary/Keyword: Floor impact sound measurement

Search Result 46, Processing Time 0.021 seconds

Performance of floor coverings by impact sound (실 충격원에 대한 바닥마감재 성능 분석)

  • Chung, Jinyun;Im, Jungbin;Lee, Sungchan;Kim, Kyoungwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.419-422
    • /
    • 2014
  • Floor impact sound level is affected by various factors. This study was examined about impact sources and floor coverings influenced at floor impact sound. So this study wishes to get method to reduce sound pressure level of receiving room. Light-weight impact sound in mid frequency and Heavy-weight impact sound in low frequency was affected by floor coverings. Therefore, method to reduce floor impact sound level is to use proper floor coverings. Some coverings can amplify the heavy-weight impact sound in low frequency. Floor impact sound sources used measurement and analysis were standard heavy-impact source(Tapping, Bang, Ball) and living impact sources(Cleaner, Chair, Toy-car, Soccer ball). And Floor coverings used measurements were various thickness vinyl, laminate(or ply-wood) floor. Especially vinyl floor coverings were very effective method to reduce floor impact.

  • PDF

Effects of the sound field characteristics of the receiving room on heavy-weight impact sound measurement generated by impact ball (임팩트 볼에 의한 중량충격음 측정에 있어서 수음실 음장특성의 영향)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeong, Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.622-625
    • /
    • 2006
  • This study is a fundamental investigation for standardization of the heavy-weight floor impact measuring method by the impact ball. The distribution chrematistics of floor impact sound level and reverberation time in a receiving room of the testing building for floor impact sound were measured with variations of number and arrangement of the sound-absorbing materials. Total 8 cases were investigated. The distribution of the floor impact sound level($L_{i,\;Fmax}$) was measured at 30 points with same intervals. The absorption coefficient of the room is 0.10 in case of installation of 6 absorbing materials and 0.02 in case of non-installation. The distribution shape of the impact sound pressure level was similar to the result of the bang machine driving at the measured frequency range. However, the overall reduction of the impact sound level investigated in the 125 to 500 Hz shows that the sound absorption characteristics of the receiving room actually affects the result of the heavy-weight impact measurement.

  • PDF

Review of measurement of impact sound improvement for light-weight floor (경량 바닥구조의 바닥충격음 저감량 실험실 측정방법 고찰)

  • Jang, Gil-Soo;Jung, Kwang-Yong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.950-955
    • /
    • 2002
  • ISO 140-11 specifies a method for measuring the acoustic properties of floor coverings from the view-point of reducing impact sound transmission. This test method is limited to the specification of procedures for the physical measurement of sound originating from an artificial impact source under laboratory conditions. In this study, ISO 140-11 was reviewed to applicable to domestic floor coverings installed on lightweight floors.

  • PDF

Review of measurement of impact sound improvement for light-weight floor (경량바닥구조의 바닥충격음 저감량 실험실 측정방법 고찰)

  • Jang, Gil-Soo;Kim, Sun-Woo;Jung, Kwang-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.392.2-392
    • /
    • 2002
  • ISO 140-11 specifies a method for measuring the acoustic properties of floor coverings from the view-point of reducing impact sound transmission. This test method is limited to the specification of procedures for the Physical measurement of sound originating from an artificial impact source under laboratory conditions. In this study, ISO 140-11 was reviewed to applicable to domestic floor coverings installed on lightweight floors.

  • PDF

Evaluation of uncertainty in measurement of floor impact sound insulation of buildings using standard heavy impact source (표준중량충격원을 이용한 건축물의 바닥 충격음 차단성능 측정불확도 평가)

  • Yong-Bong Lee;Hyok-Je Kwon;Chang-Whan Kim;Man-Hee Cho;Hang Kim;SungSoo Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.143-151
    • /
    • 2023
  • In this paper, a method for evaluating the measurement uncertainty is proposed when measuring of floor impact sound insulation of buildings using standard heavy impact source. In addition to the effect of repeated measurements, several other factors such as measurement location, impact location, equipment used for sound pressure measurement, and heavy impact source, were considered. A mathematical model for the average maximum impact sound level and the uncertainty evaluation method for each factor were proposed. The present proposed method was applied to measurement results to evaluate the average maximum impact sound pressure level and the measurement uncertainty.

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

A Study on the Insulation Performance of Impact Sound Level by Striking Location of Floor Slab (바닥 슬라브의 가진 위치에 따른 차음성능에 관한 연구)

  • Song, Pil-Dong;Park, Myung-Kil;Ham, Jin-Sik
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.73-76
    • /
    • 2003
  • This paper is contents about method to measure interception performance of shock noise of floor slab of apartment house to be simple. In the case of interception performance of light floor impact sound level, according to measurement method, grade of sound insulation performance showed greatly differently. But, in the case of interception performance of heavy floor impact sound level, it was similar result in all measurement method. Therefore, use of simple method of measurement was examined by possible fact in case of interception performance of heavy floor impact sound level.

  • PDF

Evaluation of Floor Impact Sound Isolation in a Dry Floor System (건식 바닥구조의 바닥충격음 차단성능 평가)

  • You, Jin;Ryu, Jong-Kwan;Jeon, Jin-Young;Lee, Chung-Hwa;Kim, Chul-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.950-953
    • /
    • 2005
  • Floor impact sounds from two different floor systems were measured. One of the two floor systems is a dry floor system (with 150mm concrete slab) and the other is a standard floor system (210mm concrete slab). Real impact sources such as jumping and running of children were used as well as standard impact sources (bang machine, impact ball and tapping machine) to evaluate sound Isolation of the two floor systems. Subjective evaluations of the floor impact sound isolation performance for the two systems were also conducted by the methods of 3 scales & 9 categories, paired comparison and semantic differentials. Measurement results indicate that floor impact sound isolation performance of the dry floor was better than that of standard floor in both cases of real and standard impact sources. The subjects in auditory experiments also evaluated the dry floor as a better sound isolation system.

  • PDF

Floor Impact Sound and Vibration Characteristics Affected by the Compressive Strength of Concrete (콘크리트 슬래브 압축강도에 따른 바닥충격진동 및 소음특성)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.796-799
    • /
    • 2005
  • In 2005, a regulation on the heavy-weight impact sound was released, which restricted concrete slab thickness of standard floor to 210mm. To reduce heavy-weight impact sound, damping materials and structural reinforcement system have been proposed. In this study, the effect of compressive strength on the heavy-weight impact vibration and sound were investigated. FEM analysis was conducted for the 34PY apartment with different concrete strength (210, 350, 420kg/cm$^2$). In addition, apartment floors with different concrete strength were constructed and the floor impact vibration and sound were measured. Results of FEM analysis and measurement show that the resonance frequency of concrete slab was increased by the increment of concrete strength. However, floor impact sound pressure level did not decrease because the nor impact vibration and sound pressure level in 63Hz band increased.

  • PDF

Korean Industrial Standard of “Rating of floor impact sound insulation for impact source in building and of building elements” (바닥충격음 차단성능 평가방법의 KS 규격화 방안)

  • 송민정;장길수;김흥식;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.383-386
    • /
    • 2001
  • The KS of “Measurements of impact sound insulation of floors” was established before the years. But the KS of “Rating of floor impact sound insulation for impact source in building and of building elements” is not founded yet. To establish the rating measurement of floor impact sound insulation. The studies on the rating method of domestic floor system of impact sound insulation and response of its inhabitant’s were reviewed. And the rating method of ISO’s and JIS’s were studied in this consideration. The result of this study, KS of “Rating of floor impact sound insulation for impact source in building and of building elements” is proposed.

  • PDF