• 제목/요약/키워드: Floor diaphragm

검색결과 29건 처리시간 0.027초

Structural response of a three-story precast concrete structure subjected to local diaphragm failures in a shake table test

  • Ilyas Aidyngaliyev;Dichuan Zhang;Robert Fleischman;Chang-Seon Shon;Jong Kim
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.195-204
    • /
    • 2024
  • Floor inertial forces are transferred to lateral force resisting systems through a diaphragm action during earthquakes. The diaphragm action requires floor slabs to carry in-plane forces. In precast concrete diaphragms, these forces must be carried across the joints between precast floor units as they represent planes of weakness. Therefore, diaphragm reinforcement with sufficient strength and deformability is necessary to ensure the diaphragm action for the floor inertial force transfer. In a shake table test for a three-story precast concrete structure, an unexpected local failure in the diaphragm flexural reinforcement occurred. This failure caused loss of the diaphragm action but did not trigger collapse of the structure due to a possible alternative path for the floor inertial force transfer. This paper investigates this failure event and its impact on structural seismic responses based on the shake table test and simulation results. The simulations were conducted on a structural model with discrete diaphragm elements. The structural model was also validated from the test results. The investigation indicates that additional floor inertial force will be transferred into the gravity columns after loss of the diaphragm action which can further result in the increase of seismic demands in the gravity column and diaphragms in adjacent floors.

Seismic response of torsional structures considering the possibility of diaphragm flexibility

  • Eivani, Hamed;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.463-472
    • /
    • 2021
  • Fully rigid floor diaphragm is one of the main assumptions that are widely used in common practices due to its simple application. However, determining the exact degree of diaphragms flexibility cannot be easily accomplished without finite element modeling, which is an expensive and time-consuming procedure. Therefore, it is always possible that apparently rigid diaphragms, based on prescriptive limitations of seismic codes, experience some degrees of flexibility during the earthquakes. Since diaphragm flexibility has more uncertainties in asymmetric-plan structures, this study focuses on errors resulting from probable floor diaphragm flexibility of torsionally restrained structures. The analytical models used in this study were single-story buildings with asymmetric plan and RC shear walls. Although floor system is not considered explicitly, a wide range of considered diaphragm flexibility, from fully rigid to quite flexible, allows the results to be generalizable to a lot of lateral load resisting systems as well as floor systems. It has been shown that in addition to previously known effects of diaphragm flexibility, presence of orthogonal side elements during design procedure with rigid diaphragm assumption and rapid reduction in their absorbed forces can also be an important source to increase errors due to flexibility. Accordingly, from the obtained results the authors suggest designers to consider the possibility of diaphragm flexibility and its adverse effects, especially in torsionally restrained systems in their common designs.

Effect of slab stiffness on floor response spectrum and fragility of equipment in nuclear power plant building

  • Yousang Lee;Ju-Hyung Kim;Hong-Gun Park
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3956-3972
    • /
    • 2023
  • The floor response spectrum (FRS) is used to evaluate the seismic demand of equipment installed in nuclear power plants. In the conventional design practice of NPP structure, the FRS is simplified using the lumped-mass stick model (LMSM), assuming the floor slab as a rigid diaphragm. In the present study, to study the variation of seismic response in a floor, the FRSs at different locations were generated by 3-D finite element model, and the response was compared to that of the rigid diaphragm model. The result showed that the FRS significantly varied due to the large opening in a floor, which was not captured by the rigid diaphragm model. Based on the result, seismic fragility analysis was performed for the anchorage of a heat exchanger, to investigate the effect of location-dependent FRS disparity on the high confidence low probability of failure (HCLPF).

바닥 격막을 고려한 초고층 아웃리거 구조시스템의 수평거동 (Lateral Behavior in Outrigger System of Tall Building Considering Floor Diaphragm)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.45-52
    • /
    • 2018
  • 본 논문은 바닥 격막을 고려한 초고층 아웃리거 구조시스템의 수평거동을 파악하기 위하여 80층 규모의 초고층 아웃리거 건물을 대상으로 MIDAS-Gen을 이용하여 계획설계 수준의 구조설계를 진행하였다. 그리고 본 해석의 주요한 변수는 아웃리거의 평면상 위치, 슬래브의 강성, 아웃리거의 강성, 다이어프램의 종류이다. 또한 본 연구의 목적을 위하여 최상층에서 발생하는 수평변위, 층간변위, 슬래브에 발생한 응력을 분석하였다. 본 연구의 결과, 아웃리거의 평면상 위치, 슬래브의 강성, 아웃리거의 강성, 다이어프램의 종류는 초고층 아웃리거 구조시스템의 수평거동에 영향을 주는 것으로 나타났다. 그리고 본 연구의 결과는 초고층 아웃리거 구조시스템의 수평거동을 파악하는데 필요한 구조설계 기본자료를 얻는데 도움이 된다고 사료된다.

바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치에 대한 전단벽 강성의 영향 (Effect of Shear Wall Stiffness on Optimal Location of Core and Offset Outrigger Considering Floor Diaphragm)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.37-47
    • /
    • 2019
  • 본 논문은 바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치를 파악하기 위하여 70층 규모의 초고층 아웃리거 건물을 대상으로 MIDAS-Gen을 이용하여 구조설계를 실시하였다. 그리고 본 해석연구의 주요 변수는 슬래브의 강성, 전단벽의 강성, 아웃리거의 평면상 위치이다. 또한 본 해석결과에 근거하여 슬래브의 강성과 전단벽의 강성이 바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적 위치에 미치는 영향을 분석하였다. 본 해석연구의 결과에서는 슬래브의 강성, 전단벽의 강성, 아웃리거의 평면상 위치가 초고층 아웃리거 구조시스템의 최적위치에 어떤 영향을 주는 지를 분석하여 나타났다. 그리고 본 논문의 결과는 초고층 아웃리거 구조시스템의 최적위치를 조사하는데 필요한 구조공학자료를 얻는데 도움이 된다고 사료된다.

바닥슬래브의 면내강성을 고려한 필로티 구조물의 효율적인 거동분석 (Efficient Analysis of Shear Wall Strustures with Pilotis considering the in-plane stiffness of the floor slabs)

  • 김현수;김혜숙;김현정;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.865-872
    • /
    • 2006
  • Recently, many apartment buildings in the shear wall system often has pilotis in the lower story to meet the architectural needs. If the lateral force resisting system consists of shear walls supported by columns and beams. the discontinuity at the lowest level with pilotis results in the vertical irregularity with strength and stiffness. So, there are needs to be considered tile analysis and design about column and beam bellow shear walls and the behavior and stress condition of structure by stiffness change being generated at shear walls. The purpose of this paper is to investigate the behavior of shear wall structures with pilotis using the floors modeled as rigid diaphragm or semi rigid diaphragm. Through analyses, after estimating values of the story drift, natural period, stress condition of shear walls and the forces of column, we inferred how the behavior of shear wall structures with pilotis was influenced by the floor stiffness.

  • PDF

충전성을 개선한 각형CFT 기둥-보 접합부의 구조 특성 (Structural Characteristic of Beam-to-Column Connections in Rectangular CFT Structures Considering Concrete Filling)

  • 박제영;이명재
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.187-196
    • /
    • 2013
  • CFT구조의 기둥-보 접합부는 강관의 국부좌굴을 방지하기위해 다이아프램이 필요하다. 외측다이아프램 형식은 관통다이아프램 형식보다 콘크리트의 충전성이 좋으나 시공성과 건축설비와 공조하는 측면에서 불편함이 있다. CFT구조 접합부의 상부 다이아프램은 외측다이아프램 형식으로 하고 하부 다이아프램은 관통다이아프램 형식으로 하였다. 이것은 건축물에서 바닥슬래브가 있으므로 상부 다이아프램은 바닥슬래브와 일체가 되고 하부 다이아프램으로 관통다이아프램을 적용하여 건축설비와의 마찰을 피하고자 한 것이다. 결과적으로 충전성을 개선시킨 CFT구조의 구조성능은 상, 하부 모두 관통다이아프램을 적용한 구조와 비교하면 동일하다는 것을 알 수 있다.

수평하중을 받는 전단벽 아웃리거 시스템의 거동특성 평가 (Structural Behavior Characteristics Evaluation of Shear Wall Outrigger System Subject to Horizontal Loads)

  • 김호수;이한주;홍석일;임영도
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.110-117
    • /
    • 2006
  • This study presents an effective stiffness-based optimal technique to consider floor rigid diaphragm action and a technique to evaluate the structural behavior characteristics and efficiency for tall shear wall outrigger system subject to horizontal loads. To this end, isoparametric plane stress element with rotational stiffness is used for shear wall element and stiffness gradient is calculated. Also, the approximation concept to solve effectively the large scaled problems, member grouping technique and resizing technique are considered. To verify the effectiveness and usefulness of this technique, the efficient evaluation method for three types of 50 story model with core and outrigger system is presented.

  • PDF

Panel heating을 적용한 철골조 건물의 합성테크 진동조건 설정에 관한 연구 (A study on the establishment of vibration conditions of a composite deck floor with panel heating systems for a steel structure)

  • 박진영;김희철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.972-977
    • /
    • 2000
  • One of the major differences of Korean residential building compared with other countries is a rigid diaphragm of a floor due to the panel heating system. An increment of a gravity floor load might cause vibration problem when the composite floor system is introduced to the panel heating system. Since the noise criteria of a residential building is lower than that of an office building, the development of a noise absorbing system should be preceded. The response evaluation was performed for the finished floor, that is with panel heating and noise absorbing system. The natural frequency was obtained both from an experimental study and an analytical study. An appropriate vibration condition of a floor with panel heating and noise absorbing systems was evaluated from this study.

  • PDF

설치면 강성에 따른 드럼세탁기의 동특성 및 설계대책 (The Influence of the floor rigidity on front-loading washer installation and its vibrational behavior)

  • 위훈;정지덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.248-251
    • /
    • 2004
  • The vibrational behavior of a front load washing machine is heavily influenced by the floor stiffness on which the washing machine is installed. In case the floor stiffness is extremely low like a wooden floor (we call it a 'soft floor, S/F'), it is quite probable that a washer's rigid body mode exists in the operating frequency range. In this case, the outer frame vibration level would be very high, but the mitigation scheme is quite limited except the excitation force abatement by acquisition of the optimal inertia in the internal vibratory system and the diaphragm's stiffness with the minimum force transfer.

  • PDF