• Title/Summary/Keyword: Floor Structure

Search Result 1,028, Processing Time 0.026 seconds

Experimental Study on the Performance Improvement of Velcro Reinforcement through Internal Filling (내부충진을 통한 벨크로 보강재의 성능향상에 대한 실험적 연구)

  • Jeong, Yeong-Seok;Kwon, Minho;Kim, Jin-Sup;Nam, Gwang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.347-355
    • /
    • 2021
  • During the earthquake, for multi-story structure, if the first floor is soft, the deformation will concentrate on that floor causing a serious damage to the column members which might leads to the collapse of the whole structure like Piloti structure during the Pohang earthquake in Korea. According to the 2016 National Disaster Management Research Institute's "Investigation of Seismic Reinforcement and Cost Analysis of Domestic Non-seismic Buildings", the rate of seismic resistance of private reinforced concrete buildings was 38.3 %. Among them, it was reported that the seismic-resistance ratio of the two to five-story structures was less than 50 %. Accordingly, the government is trying to improve the seismic rate through support projects, but the conventional seismic reinforcement methods are still expensive, and emergency construction is difficult. Therefore, in this study, the field applicability was evaluated by improving the reinforcement method using Velcro, which was developed through the research project of the Ministry of Land, Transport and Maritime Affairs in 2014. In order to improve the performance of the Velcro reinforcement method, introducing the initial tension of Velcro using high foaming rigid urethane filling between the Velcro and concrete of the columns was applied. Additionally, an experiment was conducted to evaluate the ductility of Velcro specimen from the concrete confinement effect. As a result, the ductility of the Velcro specimen was improved compare to Normal specimen. However, the energy dissipation capacity of VELCRO2 is better than VELCRO1, yet the maximum ductility of those two specimens did not show a significant difference. Therefore, the improvement of the internal filler material is still needed to have a better maximum ductility.

Fuzzy Control of Smart TMD using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 스마트 TMD의 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2011
  • In this study, an optimization method using multi-objective genetic algorithm(MOGA) has been proposed to develop a fuzzy control algorithm that can effectively control a smart tuned mass damper(TMD). A 76-story benchmark building subjected to wind load was selected as an example structure. The smart TMD consists of 100kN MR damper and the natural period of the smart TMD was tuned to the first mode natural period of the example structure. Damping force of MR damper is controlled to reduce the wind-induced responses of the example structure by a fuzzy logic controller. Two input variables of the fuzzy logic controller are the acceleration of 75th floor and the displacement of the smart TMD and the output variable is the command voltage sent to MR damper. Multi-objective genetic algorithm(NSGA-II) was used for optimization of the fuzzy logic controller and the acceleration of 75th story and the displacement of the smart TMD were used as objective function. After optimization, a series of fuzzy logic controllers which could appropriately reduce both wind responses of the building and smart TMD were obtained. Based on numerical results, it has been shown that the control performance of the smart TMD is much better than that of the passive TMD and it is even better than that of the sample active TMD in some cases.

A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation (지반굴착 해석모델에 따른 변위거동에 관한 연구)

  • Chung, Jeeseung;Shin, Youngwan;Kim, Manhwa;Kook, Yunmo;Jeong, Kyukyung;Kim, Pilsoo;Lee, Sanghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.27-32
    • /
    • 2018
  • There were many ground excavation projects from past to present to make effective use of the limited land. And it is very important to predict the ground behavior depending on construction stage for ground excavation. Excavation of the ground involves changes in the stress and displacement of the ground around the excavated surface. Thus it affects the stability of the adjacent structure as well as the excavated surface. Therefore, it is very important to predict the ground behavior and stability of adjacent structure. And nowadays, numerical analysis methods are most often used to predict the effects of ground excavation. Recent, improvements of numerical analysis programs, along with improved computer performance, have helped solve complicated ground problems. However, except some specialized numerical analysis, most numerical analysis often predicts larger excavation floor displacement than field data due to adopt the Mohr-Coulomb analysis model. As a result, it raise the problem that increasing the amount of support on ground and structure. In this study, ground behavior analysis depending on analysis model (Mohr-Coulomb, Duncan-Chang, Modified Mohr-Coulomb and Hardening Soil model) has been carried out through the numerical analysis. When numerical analysis is carried out, this study is expected to be used as a basic data for adopting a suitable analysis model in various ground excavation project.

A Study on the Increase of Bearing Capacity of Soft Ground in Shallow Foundation Using High Density Rapid Expansion Material (고밀도 급속 팽창재를 이용한 얕은기초 연약지반의 지내력 증대에 관한 연구)

  • Ro, Euichul;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.185-198
    • /
    • 2020
  • High-density rapid expansion material is a method that increases the solid volume of injection materials due to hydration and foam reactions at the same time as spraying. It is an effective method for securing ground stability, restoring subsidence, and loading during construction of structures. In this regard, through the mechanical experiments of injection materials, the stability of the foundation ground of the structure and the effect of increasing the endurance using site construction were analyzed. The results of the experiment showed that the unit weight of soil decreased by 10.5% after injection of the filling material, and the allowable support for the structure was deemed safe, and the subsidence by each section after ground improvement was determined to be safe at 2.28, 1.55 and 0.46 cm, respectively, with an acceptable subsidence of less than 5 cm. After the field test, five inclinometers were installed on the top floor of the target building to measure the displacement of the X and Y axes. As a result of the measurement, no displacement related to the phenomenon of inequality or subsidence cracks of the structure was measured for about 16 months (509 days) after construction. This can be judged to be a sufficient increase in the stability of the ground after the injection of rapid expansion.

Studies on the Productive Structure and the Productivity of × Populus albaglandulosa Plantation (은수원사시나무의 조림지(造林地)의 생산구조(生産構造)와 생산성(生産性))

  • Kim, Joon Ho;Sun, Soon Hwa;Lee, Suk Koo;Kim, Chung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.35 no.1
    • /
    • pp.9-14
    • /
    • 1977
  • The productive structure and the productivity of ${\times}$Populus albaglandulosa plantations, where are middle parts of the Korean peninsula, were studied by means of stratifying clip technique and of allometry. The densities of stands in the sample areas were 693 trees/ha in 6 year-old plantation and 527 or 625 trees/ha in 9 year-old one. The photosynthetic part of the productive structure was not shown normal conical form but layering. So this was efficient to transmit solar radiation into the stand floor. The standing crop of the terrestrial parts of 6 year-old plantation was 18.11 ton/ha and that of 9 year-old one 38.8 to 47.3 ton/ha. The wood volume to trunk to 6 year-old was $31.3m^3/ha$ and that of 9 year-old was 68.8 to $83.9m^3/ha$. The annual net production of 6 year-old plantation was 4.8 ton/ha/year and that of 9 year-old one was 10.0 to 11.7 ton/ha/year and its wood volume of trunks was 17.9 to $21.1m^3/ha/year$. In the 9 year-old plantation the standing crop or the annual net production was different between two sample areas. This seemed that the cause was not due to chemical character but to physical character of soil.

  • PDF

Seismic Responses Control of Coupled Shear Wall Structures Using LRBs (LRB를 이용한 병렬전단벽 구조물의 지진응답제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. When these structures are subjected to seismic excitations, excessive shear forces are induced in coupling beams. Accordingly, brittle failure of coupling beams may occur or shear walls may yield first. To avoid this problem, damping devices can be installed in coupling beams. It can increase the vibration control effect and improve the seismic resistance performance of the coupled shear wall structure by avoiding stress concentration and the brittle failure of coupling beams. Based on this background research, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam in this study and the authors investigated the seismic response control effect and stress distribution of the proposed system. To this end, a modeling technique that can effectively predict the structural behavior of coupled shear wall structures has been proposed. With this proposed technique, time history analyses of the example coupled shear wall structure subjected to seismic excitation were performed and the vibration control effects of the seismic responses were investigated.

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method (외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석)

  • Park, Ill-Kyung;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1070-1079
    • /
    • 2012
  • The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

The Preconsideration of Kiln for Firing Soft Stoneware in the Yeongnam Province in the Proto-Three Kingdoms Period (영남지방 원삼국시대의 토기가마구조에 대한 예찰)

  • Kim, Jae-cheol
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.35-72
    • /
    • 2007
  • Since three has never been any incidence of having investigated kilns for firing soft stoneware in the proto-three kingdoms period so far, how they structured by reviewing historic literature and material was preconsidered in this study. It is presumed that after both Gimhae Daeseongdong-type and Sacheon Bonggyeri-type kilns for firing earthenware coexist early, through an internal alteration process which is mutually complex and momentous, the floor of plastic room has been flattened or slanted and expanded little by little into the closed-kiln structure. It seems that the structure of kilns for firing soft stoneware was a horizontal combustion type(水平燃燒式) and its plane shape was close to being rectangular in shape unlike that of kilns for firing stoneware found in Honam and Hoseo province in the period of (proto-) three kingdoms. On the other hand, it is likely that the horizontal combustion type structure of kilns for firing stoneware excavated in Samyong-ri, Jincheon preceded the vertical combustion type(垂直燃燒式)that of kilns for firing stonewere found in Sansu-ri. In addition, the term, monumeut for firing earthenware must be changed to kiln for firing earthenware and the terms of Pyeungyo(平窯) and Dyengyo(登窯) can be applied to kilns for firing tiles. Thus, it does not seem likely that the absolute equality that Wajil earthenware(soft stoneware) pottery is Pyeungyo and stoneware pottery is Dyeungyo is applied in all cases.

SINUS FLOOR GRAFTING USING CALCIUM PHOSPHATE NANO-CRYSTAL COATED XENOGENIC BONE AND AUTOLOGOUS BONE (칼슘포스페이트 나노-크리스탈이 코팅된 골이식재와 자가골을 병행 이용한 상악동 거상술)

  • Pang, Kang-Mi;Li, Bo-Han;Alrashidan, Mohamed;Yoo, Sang-Bae;Sung, Mi-Ae;Kim, Soung-Min;Jahng, Jeong-Won;Kim, Myung-Jin;Ko, Jea-Seung;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.243-248
    • /
    • 2009
  • Purpose: Rehabilitation of the edentulous posterior maxilla with dental implants often poses difficulty because of insufficient bone volume caused by pneumatization of the maxillary sinus and by crestal bone resorption. Sinus grafting technique was developed to increase the vertical height to overcome this problem. The present study was designed to evaluate the sinus floor augmentation with anorganic bovine bone (Bio-$cera^{TM}$) using histomorphometric and clinical measures. Patients and methods: Thirteen patients were involved in this study and underwent total 14 sinus lift procedures. Residual bone height was ${\geq}2mm$ and ${\leq}6mm$. Lateral window approach was used, with grafting using Bio-$cera^{TM}$ only(n=1) or mixed with autogenous bone from ramus and/or maxillary tuberosity(n=13). After 6 months of healing, implant sites were created with 3mm diameter trephine and biopsies taken for histomorphometric analysis. The parameters assessed were area fraction of new bone, graft material and connective tissue. Immediate and 6 months after grafting surgery, and 6 months after implantation, computed tomography (CT) was taken and the sinus graft was evaluated morphometric analysis. After implant installation at the grafted area, the clinical outcome was checked. Results: Histomorphometry was done in ten patients.Bio-$cera^{TM}$ particles were surrounded by newly formed bone. The graft particles and newly formed bone were surrounded by connective tissue including small capillaries in some fields. Imaging processing revealed $24.86{\pm}7.59%$ of new bone, $38.20{\pm}13.19%$ connective tissue, and $36.92{\pm}14.51%$ of remaining Bio-$cera^{TM}$ particles. All grafted sites received an implant, and in all cases sufficient bone height was achieved to install implants. The increase in ridge height was about $15.9{\pm}1.8mm$ immediately after operation (from 13mm to 19mm). After 6 months operation, ridge height was reduced about $11.5{\pm}13.5%$. After implant installation, average marginal bone loss after 6 months was $0.3{\pm}0.15mm$. Conclusion: Bio-$cera^{TM}$ showed new bone formation similar with Bio-$Oss^{(R)}$ histomorphometrically and appeared to be an effective bone substitute in maxillary sinus augmentation procedure with the residual bone height from 2 to 6mm.