• Title/Summary/Keyword: Floor Slabs

Search Result 146, Processing Time 0.027 seconds

Development and Implementation of a Low-noise and Safe Dismantling Method for Full-Span Aluminum Slab Formwork Supported by Filler Supports (필러겸용 스포터로 지지되는 전구간 알루미늄 슬래브 거푸집의 저소음 안전낙하 공법개발 및 적용연구)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2024
  • The widespread adoption of aluminum slab formwork in modern construction, evident in both domestic and international projects, offers numerous advantages. However, a critical challenge persists regarding the dismantling process for these slabs. The current industry standard involves dropping the slabs to the ground floor upon removal. This practice raises several concerns, notably the generation of significant noise pollution that disrupts nearby communities. More importantly, the risk of worker injuries due to falls from height during the dismantling process is a serious safety hazard. Additionally, the impact from dropping the slabs can damage the aluminum itself, leading to increased replacement costs. These drawbacks necessitate the exploration of alternative dismantling techniques that prioritize worker safety, material sustainability, and overall process efficiency. Accordingly, in this study, when the entire first-generation slab formwork of an apartment house is simultaneously lowered to a reachable position for workers, it is then disassembled and lifted for transport to the next floor. This approach has the potential to demonstrate improvements in safety, quality, economy, and process efficiency.

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

A Study on the Rate Classification of Floor Impact Noise (바닥충격음의 평가등급 설정에 관한 연구)

  • Ryu, Jong-Kwan;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.486-491
    • /
    • 2002
  • Auditory experiments based on subjective responses were undertaken for the standard heavy and light weight impact noise. Relations between noise levels and subjective evaluations were also investigated. As a result, it was shown that the noise class was rated with the range of sensible satisfaction by investigating the various social responses for the floor impact noise. The rate classification for the heavy weight impact noise is suggested as a design guide for concrete slabs which satisfy the residents' requirements in various sound insulation capacities of multistory residential buildings.

  • PDF

A Study on Psycho-acoustic experiment of Two-way void Slabs and Rahmen structure (이방향 중공슬래브 및 라멘조 바닥구조의 청감평가 연구)

  • Shin, Hoon;Lee, Tai-Kang;Song, Min-Jeong;Lee, Ju-Yeob;Kim, Hyung-Geon;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.391-396
    • /
    • 2013
  • Psycho-acoustic experiments were carried out to know the inhabitant's response on floor impact noises due to floor structure types. The response values for tapping machine, bang machine and impact ball were 4.4~6.06. And children walking and adult walking were 1.67~2.97. Using 11 scale response tests, children and adult walking was not irritate to dwellers and children running was disturbing.

  • PDF

Evaluation on in-situ Heat Exchange Efficiency of Energy Slab According to Pipe Materials and Configurations (파이프 재질 및 형태에 따른 에너지 슬래브의 현장 열교환 성능 평가)

  • Lee, Seokjae;Oh, Kwanggeun;Han, Shin-in;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • The energy slab is a ground coupled heat exchanger equipped in building slab structures, which represents a layout similar to the horizontal ground heat exchanger (GHEX). The energy slab is installed as one component of the floor slab layers in order to utilize the underground structure as a hybrid energy structure. However, as the energy slab is horizontally arranged, its thermal performance is inevitably less than the conventional vertical GHEXs. Therefore, stainless steel (STS) pipes are alternatively considered as a heat exchanger instead of high density polyethylene (HDPE) pipes in order to enhance thermal performance of GHEXs. Moreover, not only a floor slab but also a wall slab can be utilized as a heat-exchangeable energy slab in order to maximize the use of underground space effectively. In this paper, four field-scale energy slabs were constructed in a test bed, which consist of the STS and HDPE pipe, and a series of thermal response tests (TRTs) was conducted to evaluate relative heat exchange efficiency per unit pipe length according to the pipe material and the configuration of energy slabs. The energy slab equipped with the STS pipe shows higher thermal performance than the energy slab with the HDPE pipe. In addition, thermal performance of the wall-type energy slab is almost equivalent to the floor-type energy slab.

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF

Load Distribution Factors for Hollow Core Slabs with In-situ Reinforced Concrete Joints

  • Song, Jong-Young;Kim S, Elliott;Lee, Ho;Kwak, Hyo-Gyoung
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • This paper provides the engineer with a simple design method dealing with situations arise where in-situ reinforced concrete joints are cast between hollow core units. Using finite element method, hollow core slabs with wide in-situ RC joints under point load and line loads are analysed. In addition, some important behavioural characteristics of the floor slab subjected to line and point loads are investigated. In-situ reinforced concrete joint causes reduction of load distribution for remote units because distance to the remote units from the point of load is increased, while the portion of load distribution carried by loaded unit increases. Also, it was turned out load distribution factors for point load and line loads are almost same. Finally, we suggest a simple analytical method, which can determine load distribution factors using normalized deflections by regression analysis for design purposes.

A basic study for development of SMART form for beams (SMART 보 거푸집 개발 기초연구)

  • Kim, Gyeongju;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.203-204
    • /
    • 2014
  • Unlike other members, beams have various cross-sections and they have an important role of delivering the load of slabs. A beam form neighbors the columns and slabs, which makes it difficult to be installed. In a conventional way to exclusively use the form after concrete pouring, the form and a support should be both removed. Then, the support should reinstalled to sustain the stripping time of form, resulting in a structural issue. To solve such structural problem, the study proposes SMART beam form that uses filler panels and supports for filler. The floor filler panels and supports for filler are not removed after concrete curing, to conform to the stripping time of supports. Thus, any structural problem such as cracks and reduction of compressive strength owing to the gap of load bearing capacity can be prevented. The study results will be used as cases for studies on productivity analyses.

  • PDF

The Selection of the Improved Void Slab Applying the Impedance Method to the Floor-Impact Sound (바닥충격음 임피던스법에 의한 개량형 보이드 슬라브의 선정)

  • Kim, U-Taek;O, Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.159-166
    • /
    • 2001
  • Recently, high story apartments are common to solve a housing problem especially in major cities. Apartments are considered as clean, sanitary and convenient to live. However, There are some problems because residents share walls, floors and ceilings with other people. Thus, the residents are often disturbed by neighbours since sound travels the building elements. Especially, impact noise through the floors causes the many complains. And so, it has been drawn attention to isolate by the impact sound. The purpose of this study is to analyze the characteristics of vibration response of 12-type void slabs in the improved void slab by impedance method, and is to find the best improveds void slab on the 12-type void slabs.

  • PDF