• Title/Summary/Keyword: Flooding water

Search Result 722, Processing Time 0.03 seconds

Quantifying Inundation Analysis in Misari motorboat racing stadium using MOUSE (MOUSE를 활용한 미사리 조정경기장의 정량적 침수해석)

  • Hwang, Hwan-Kook;Han, Sang-Jong;Chong, Yon-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.549-560
    • /
    • 2010
  • Recently, heavy rainfalls due to the climate change in Korea have caused inundation problems in urban sewer networks. In july 2006, a flooding accident at Misari motorboat racing stadium near the Han river occurred due to the effect of record-breaking outflow discharge from Paldang-dam. The purpose of this study was to simulate and analyze the flooding accident at Misari stadium by MOUSE model. The results of simulation analysis indicated that the total flood volume was $1,313,450m^3$. The effect of back water was 85.9% of the total volume which was caused by the manhole accident, and the effect of accumulated runoff was 14.1% of total volume which was caused by non-return valve shutdown. The simulation results of this MOUSE modeling that was linked to the boundary condition of the dynamic flows in the river by DWOPER model showed the potential of successful inundation analysis for sewer networks.

Air-Water Countercurrent Flow Limitation in a Horizontal Pipe Connected to an Inclined Riser

  • Kang, Seong-Kwon;Chu, In-Cheol;No, Hee-Cheon;Chun, Moon-Hyun;Sung, Chang-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.548-560
    • /
    • 1999
  • An experimental investigation has been peformed to examine the effects of various geometrical parameters and an initial operating condition on the air-water countercurrent How limitation (CCFL) in a simulated PWR hot leg. A total of 118 experimental data for the onset of CCFL and zero liquid penetration were obtained for various combinations of test parameters. It was observe that the CCFL can be classified into three different categories: (the onset of CCFL, (the partial liquid delivery, and (r) the zero liquid penetration. The observed mechanisms of the onset of CCFL were different depending on the inlet water flow rate. The parametric effects of pipe diameter, horizontal pipe length, horizontal pipe length-to-diameter (L/D) ratio, and initial water level in the horizontal pipe of the test section on the onset of air-water CCFL were also examined. An empirical correlation for the onset of CCFL in a horizontal pipe connected to an inclined riser was developed in terms of Wallis flooding parameters for the low inlet water flow rate region. Comparisons of the present empirical correlation with the air-water CCFL data of large pipe diameters show that the present correlation agrees more closely with the experimental data than the existing CCFL correlations.

  • PDF

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

Growth Responses of Rice and Barnyardgrass Varieties to Flooding at Early Growing Period (벼와 피의 침관수에 따른 생장 반응)

  • Kim, Haejin;Oh, Seonghwan;Park, Jonghyun;Cho, Seongwoo;Woo, Sunhee;Lee, Chulwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Barnyard grasses are dominant weed that are not eliminated easily in the direct water seeding cultivation. So, deep water treatment can reduce their growth at the early growing stage of submerged paddy. This study was carried out to investigate the reducing growth of the barnyard grasses through flooding at seedling stages of rice plant in the green house. Under the normal condition, the plant height of rice variety, Samgwangbyeo, and 3 species of barnyard grass, E. caudata, E. pratocola and E. utilis were not showed the difference up to 10 days after seeding while the plant height of 3 barnyard grass species, especially E. utilis, was more elongated than the rice at 25 days after seeding. Plant height of the 3 barnyard grasses were not elongated largely during 3, 5 and 7 days of flooding treatment at 10 days after seeding. Interestingly, the rice seedlings was grown over 20 cm, and the flooding tolerance of rice seedling was higher than the 3 barnyard grass varieties. However, after flooding treatment for 3, 5 and 7 days, the elongation of plant height of 3 barnyard grasses, especially E. utilis was more speedy compared to rice seedlings as 6 to 9 days passes. And the protein spots from barnyard grasses were also reduced and eliminated more than the spots of rice seedling after flooding treatment.

Analysis on Rainwater Harvesting System as a Source of Non-Potable Water for Flood Mitigation in Metro Manila (마닐라의 홍수저감을 위한 잡용수 대체자원으로서의 가정용우수저류시설 분석)

  • Necesito, Imee V.;Felix, Micah Lourdes A.;Kim, Lee-Hyung;Cheong, Tae Sung;Jeong, Sangman
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.223-231
    • /
    • 2013
  • Excessive precipitation, drought, heat waves, strong typhoons and rising sea levels are just some of the common indicators of climate change. In the Philippines, excessive precipitation never failed to devastate and drown the streets of Metro Manila, a highly urbanized and flood-prone area; such problems are expected to occur frequently. Moreover, the water supply of Metro Manila is dependent only to Angat Reservoir. Rainwater harvesting can serve as an alternative source of raw water and it can mitigate the effects of flooding. The harvested rainwater can be used for: potable consumption if filtered and disinfected; and non-potable consumptions (e.g., irrigation, flushing toilets, carwash, gardening, etc.) if used untreated. The rainfall data were gathered from all 5 rainfall stations located in Metro Manila namely: Science Garden, Port Area, Polo, Nangka and Napindan rain gauge stations. To be able to determine the potential volume of rainwater harvested and the potentiality of rainwater harvesting system as an alternate source of raw water; in this study, three different climatic conditions were considered, the dry, median and wet rainfall years. The frequent occurrence of cyclonic events in the Philippines brought significant amount of rainwater that causes flooding in the highly urbanized region of Metro Manila. Based from the results of this study, the utilization of rainwater harvesting system can serve as an alternative source of non-potable water for the community; and could also reduce the amount of surface runoff that could result to extreme flooding.

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Flood analysis for agriculture area using SWMM model: case study on Sindae drainage basin

  • Inhyeok Song;Hyunuk An;Mikyoung Choi;Heesung Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.799-808
    • /
    • 2023
  • Globally, abnormal climate phenomena have led to an increase in rainfall intensity, consequently causing a rise in flooding-related damages. Agricultural areas, in particular, experience significant annual losses every year due to a lack of research on flooding in these regions. This study presents a comprehensive analysis of the flood event that occurred on July 16, 2017, in the agricultural area situated in Sindaedong, Heungdeok-gu, Cheongju-si. To achieve this, the EPA (United States Environmental Protection Agency) Storm Water Management Model (SWMM) was employed to generate runoff data by rainfall information. The produced runoff data facilitated the identification of flood occurrence points, and the analysis results exhibited a strong correlation with inundation trace maps provided by the Ministry of the Interior and Safety (MOIS). The detailed output of the SWMM model enabled the extraction of time-specific runoff information at each inundation point, allowing for a detailed understanding of the inundation status in the agricultural area over different time frames. This research underscores the significance of utilizing the SWMM model to simulate inundation in agricultural areas, thereby validating the efficacy of flood alerts and risk management plans. In particular, the integration of rainfall data and the SWMM model in flood prediction methodologies is expected to enhance the formulation of preventative measures and response strategies against flood damages in agricultural areas.

Variation of Cardiac Output and Blood Pleasure after Flooding Water into Lungs (폐 침수시의 심장 박출량과 혈압의 변동)

  • Cho, Sung-Doo;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.57-66
    • /
    • 1967
  • Cold $(0^{\circ}C)$ or warm $(25^{\circ}C)$ fresh and sea water were flooded into the lungs of rabbits through tracheal canule. Respiratory arrest ensued in 19.5 minutes in the warm fresh water flooded rabbits and was the longest survival time among the experimental groups. The survival times in the other groups were: 2.32 minutes in cold fresh water group, 2.75 minutes in .warm sea water group, and 4.57 minutes in cold sea water group. Cardiac output was measured by means of T-1824 dilution technique after 2 or 3 minutes of flooding in 27 rabbits. Blood pressure was observed by mercury manometer throughout the survival time in 40 rabbits. The following results were obtained. 1. Cardiac output in the warm fresh water flooded and sea water flooded animal was smaller than that of control rabbits. In the cold fresh water flooded animal cardiac output was greater than that of the control animal. 2. Time constants of T-1824 dilution curve of experimental group were elongated than the normal curve. 3. Central blood volume showed an increase in the fresh water group, a decrease in cold sea water group and no change in warm sea water group. 4. In all of the experimental groups arterial blood Pressure showed an abrupt and great variations after flooding of lungs and lasted about 30 seconds. Thereafter, arterial pressure remained at a plateau level until the sudden fall to zero and this was almost coincided with the time of respiratory arrest. The Plateau level of arterial Pressure in fresh water group was about 10 mmHg higher than the control value, and it was lower than the control value in warm sea water group. In cold sea water group the plateau was made up by fluctuations around the control value. 5. Osmosis of water through the lung alveolar membrane occured in all animals. Fresh water caused hemodilution and sea water caused hemoconcentration. 6. In sea water flooded animal more volume of water was recovered through the tracheal canule than the volume injected into trachea. This was interpreted as the consequence of the shift of water from plasma to alveolar sac. 7. Relative freight of lung was greater in fresh water group than sea water group. In all animal lung edema ensued. 8. The mechanisms of cardiac output variations were discussed.

  • PDF

Study on the Rice Yield Reduction and Over head Flooding Depth for Design of Drainage System (배수 설계를 위한 벼의 관수심 및 관수피해율에 관한 연구)

  • 김천환;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.69-79
    • /
    • 1982
  • The objective of this study is to contribute to drainage planning in the most realistic and economical way by establishing the relationship between rice yield reduction and overhead flooding by muddy water of each growth stage of paddy, which is the most important factor in determining optimum drainage facilities. This study was based on the data mainly from the experimental reports of the Office of Rural Development of Korea, Reduction Rate Estimation for Summer Crops, published by Ministry of Agriculture and Forestry of Japan and other related research documenta- tion. The results of this study are summarized as follows 1. Damages by overhead flooding are highest in heading stage and have the tendency of decrease in the order of booting stage, panicle formation stage, tillering stage, and stage just after transplanting. Damages by overhead flooding of each growing stage are as follows: a) It is considered that overhead flooding just after transplanting gives a little influence on plant growth and yield because the paddy has sufficient growth period from floo ding to harvest time. b) Jt is analyzed that according to the equation y=11 12x 0.908 which is derived from this study, damages by overhead flooding during tillering stage for 1, 2, 3 successive days are 11.1 %, 20.9%, and 30.2% respectively. c) Damages by overhead flooding after panicle formation stage are very serious because recovering period is very short after damage and ineffective tillering is much. Acc- ording to the equation y=9. 58x+10. Ol derived from this study, damages by overhead flooding fal 1,2,3,5 successive days are 19.6%, 29.2%, 38.8%, 57.9% respectively. d) Booting stage is the very important period in which young panicle has grown up almost completely and the number of glumous flower is fixed since reduction division takes place in the microspore mother cell and enbryo mother cell. According to the equation y=39. 66x 0.558 derived from this study, damages by overhead floodingfor 0.5, 1, 3, 5 successive days are 26.9%, 39.7%, 72. 2% and 97.4%, respectively. Therefore, damages by overhead flooding is very serious during the hooting stage. e) When ear of paddy emerges, flowering begins on that day or the next day; when paddy flowers, fertilization will be completed 2-3 hours after flowering. Therefore overhead flooding during heading stage impedes flowering and increases sterilizing percentage. From this reason damages of heading stage are larger than that of booting stage. According to the equation y-41 94x 0.589 derived from this study, damages by overhead flooding for 0.5, 1, 3, 5, successive days are 27.9%, 63.1 %, 80.1%, and 100% 2. Considering that temperature of booting stage is higher than that of beading stage and plant height of booting stage is ten centimeters shorter than that of heading stage, booting stage should be taken as a critical period for drainage planning because possi- bility of damage occurrence in booting stage is larger than that of heading stage. There-fore, it is considered that booting stage should be taken as critical period of paddy growth for drainage planning. 3. Overhead flooding depth is different depending on the stage of growth. In case, booting stage is adopted as design stage of growth for drainage planning, it is conside red that the allowable flooding depth for new varieties and general varieties are 70cm and 80cm respectively. 4. Reduction Rate Estimation by Wind and Flood for Rice Planting of the present design criteria for drainage planning shows damage by overhead flooding for 1 to 2, 3 to 4, 5 to 7 consecutive days; damages by overhead flooding varies considerably over several hours and experimental condition of soil, variety of paddy, and climate differs with real situation. From these reasons, damage by flooding could not be estimated properly in the past. This study has derived the equation which shows damages by flooding of each growth stage on an hourly basis. Therefore, it has become possible to compute the exact damages in case duration of overhead flooding is known.

  • PDF