• Title/Summary/Keyword: Flooding time

Search Result 393, Processing Time 0.022 seconds

Development of 3D GIS System for the Visualization of Flood Inundation Area (홍수범람지역 가시화를 위한 3차원 GIS 시스템 개발)

  • Lee, Geun Sang;Jeong, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.749-757
    • /
    • 2008
  • Recently, flood damages have increased with heavy rainfall and typhoon influences, and it requires that visualization information to the flood inundation area of downstream in dam discharge. This study developed 3D GIS system that can visualize flood inundation area for Namgang Dam downstream. First, DEMs extracted from NGIS digital maps and IKONOS satellite images were optimized to mount in iWorld engine using TextureMaker and HeightMaker modules. And flood inundation area of downstream could be efficiently extracted with real-time flooding water level using Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV) in river cross section. This visualization information of flood inundation area can be used to examine flood weakness district needed in real time Dam operation and be applied to establish the rapid flood disaster countermeasures efficiently.

Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform (구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구)

  • Park, Jongsoo;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1761-1775
    • /
    • 2022
  • Due to unpredictable climate change, the frequency of occurrence of water-related disasters and the scale of damage are also continuously increasing. In terms of disaster management, it is essential to identify the damaged area in a wide area and monitor for mid-term and long-term forecasting. In the field of water disasters, research on remote sensing technology using Synthetic Aperture Radar (SAR) satellite images for wide-area monitoring is being actively conducted. Time-series analysis for monitoring requires a complex preprocessing process that collects a large amount of images and considers the noisy radar characteristics, and for this, a considerable amount of time is required. With the recent development of cloud computing technology, many platforms capable of performing spatiotemporal analysis using satellite big data have been proposed. Google Earth Engine (GEE)is a representative platform that provides about 600 satellite data for free and enables semi real time space time analysis based on the analysis preparation data of satellite images. Therefore, in this study, immediate water disaster damage detection and mid to long term time series observation studies were conducted using GEE. Through the Otsu technique, which is mainly used for change detection, changes in river width and flood area due to river flooding were confirmed, centered on the torrential rains that occurred in 2020. In addition, in terms of disaster management, the change trend of the time series waterbody from 2018 to 2022 was confirmed. The short processing time through javascript based coding, and the strength of spatiotemporal analysis and result expression, are expected to enable use in the field of water disasters. In addition, it is expected that the field of application will be expanded through connection with various satellite bigdata in the future.

Characteristics of Sea Exchange in Gwangyang Bay and Jinju Bay considering Freshwater from Rivers (하천유출수를 고려한 광양만과 진주만의 해수교환 특성)

  • Hong, Doung;Kim, Jongkyu;Kwak, Inn-Sil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • At the center of the Noryang waterway, the Gwangyang bay area (including the Yeosu Strait) is located at the west, and the Jinju bay area (including Gangjin bay and Sacheon bay) is located at the east. Freshwater from several rivers is flowing into the study area. In particula,r the event of flood, great quantities freshwater flow from Seomjingang (Seomjin river) into the Gwangyang bay area and from Gahwacheon (discharge from Namgang Dam) into the Jinju bay. The Gwangyang and Jinju bay are connected to the Noryang waterway. In addition, freshwater from Seomjingang and Gahwacheon also affect through the Noryang waterway. In this study, we elucidated the characteristics of the tidal exchange rate and residence time for dry season and flood season on 50 frequency, considering freshwater from 51 rivers, including Seomjingang and Gahwacheon, using a particle tracking method. We conducted additional experiments to determine the effect of freshwater from Seomjingang and Gahwacheon during flooding. In both the dry season and flood season, the result showed that the particles released from the Gwangyang bay moved to the Jinju bay through the Noryang waterway. However, comparatively small amount of particles moved from the Jinju bay to the Gwangyang bay. Each experimental case, the sea exchange rate was 44.40~67.21% in the Gwangyang bay and 50.37~73.10% in the Jinju bay, and the average residence time was 7.07~15.36days in the Gwangyang bay and 6.45~12.75days in the Jinju bay. Consequently the sea exchange rate increased and the residence time decreased during flooding. A calculation of cross-section water flux over 30 days for 7 internal and 5 external areas, indicated that the main essential flow direction of the water flux was the river outflow water from Seomjingang flow through the Yeosu strait to the outer sea and from Gahwacheon flow through Sacheon bay, Jinju bay and the Daebang waterway to the outer sea.

Effects of Depth and Duration of Flooding on Growth and Yield at Flowering Stage in Tomato(Lycopersicon esculentum). (토마토(Lycopersicon esculentum)의 개화기 침수 처리에 따른 생육 반응)

  • Guh, Ja-Ock;Han, Sung-Uk;Kuk, Yong-In;Chon, Sang-Uk;Lee, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 1997
  • Tomatoes are flooded differently 0, 5, 10 and 15cm, according to the developing stages such as flowering stage under the condition of greenhouse. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. Plant height decreased in the depth of $0{\sim}10cm$ for over 48 hours, in the depth of 15cm for over 24 hours. Number of leaves was the same as in control, and it decreased over. Number of flowers and fruit setting of individuals decreased conspicuously according as the depth and the hours got greater and longer. Adventitious root occurred remarkably in the depth of $0{\sim}10cm$, for over 24 hours and in the depth of 15cm, 12 hours. Epinastic curvature increased greatly as the depth and the hours got greater and longer. Diffusion resistance of stomata cell increased as the depth and the hours got greater and longer. Diseases occurred conspicuously as the hours of flooding got longer rather than as the depth greater. The preventing of diseases caused by insecticide was observed, but it was not greater than in the seedling and transplanting stage. Fertilization was effective in the case of increasing the weight of shoot. Number of fruits per plant did not decrease in the depth of 0cm up to 24 hours, but decreased on the deeper level of flooding and increased as the hours got longer. Moreover with the exception of 120 hours per respective depth of the treatment, average weight of a fruit got greater as the depth and the hours got greater and longer. In the case of epinastic curvature and diffusion resistance, there was negative correlation between all the other investigated characters and positive correlation between weight of a fruits and average weight of a fruit.

  • PDF

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

A study on simplification of SWMM for prime time of urban flood forecasting -a case study of Daerim basin- (도시홍수예보 골든타임확보를 위한 SWMM유출모형 단순화 연구 -대림배수분구를 중심으로-)

  • Lee, Jung-Hwan;Kim, Min-Seok;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.81-88
    • /
    • 2018
  • The rainfall-runoff model made of sewer networks in the urban area is vast and complex, making it unsuitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model is constructed and simplified using the sewer network of Daerim baisn. The network simplification process was composed of 5 steps based on cumulative drainage area and all parameters of SWMM were calculated using weighted area. Also, in order to estimate the optimal simplification range of the sewage network, runoff and flood analysis was carried out by 5 simplification ranges. As a result, the number of nodes, conduits and the simulation time were constantly reduced to 50~90% according to the simplification ranges. The runoff results of simplified models show the same result before the simplification. In the 2D flood analysis, as the simplification range increases by cumulative drainage area, the number of overflow nodes significantly decreased and the positions were changed, but similar flooding pattern was appeared. However, in the case of more than 6 ha cumulative drainage area, some inundation areas could not be occurred because of deleted nodes from upstream. As a result of comparing flood area and flood depth, it was analyzed that the flood result based on simplification range of 1 ha cumulative drainage area is most similar to the analysis result before simplification. It is expected that this study can be used as reliable data suitable for real-time urban flood forecasting by simplifying sewer network considering SWMM parameters.

Weed Occurrence Accompanied by Sowing Time and Control System in Dry-seeded Rice Fields (벼 건답직파(乾畓直播) 재배시기별(栽培時期別) 잡초발아양상(雜草發芽樣相) 및 방제체계(防除體系))

  • Choi, C.D.;Choi, J.S.;Kim, C.R.;Choi, B.S.;Yeo, S.K.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 1998
  • Field experiment were carried out to elucidate the changes of weed occurrence according to the sowing time and to establish the efficient weed control system in dry seeded rice cultivation. E crus-galli and D. sanguinalis are tow major weeds at the earlier sowings, but C. difformis was dominating at the later sowing. In the case of E. crus-galli, there was a tendency of gaining its dominance values as the rice growth stage advances. The later the sowing time was, the more weeds occurred at the early rice growth stages: However, when measured at heading, total dry weight was greater at the earlier sowings. Yield loss due to weeds were also greater at the earlier sowings. Community diversity of weeds was greater at the later sowings, while specific weed was gradually dominating as rice growth stage advances, regardless of sowing time. When herbicides were applied before 15 DAS, weeds were effectively controlled only upto 35 DAS. So systemic herbicide application, one on 0 to 10 DAS and the other on just after flooding, appeared to be recommendable in direct seeded rice cultivation.

  • PDF

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.

Flood Forecasting and Warning System using Real-Time Hydrologic Observed Data from the Jungnang Stream Basin (실시간 수문관측자료에 의한 돌발 홍수예경보 시스템 -중랑천 유역을 중심으로-)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • We suggest a simple and practical flood forecasting and warning system, which can predict change in the water level of a river in a small to medium-size watershed where flash flooding occurs in a short time. We first choose the flood defense target points, through evaluation of the flood risk of dike overflow and lowland inundation. Using data on rainfall, and on the water levels at the observed and prediction points, we investigate the interrelations and derive a regression formula from which we can predict the flood level at the target points. We calculate flood water levels through a calibrated flood simulation model for various rainfall scenarios, to overcome the shortage of real water stage data, and these results as basic population data are used to derive a regression formula. The values calculated from the regression formula are modified by the weather condition factor, and the system can finally predict the flood stages at the target points for every leading time. We also investigate the applicability of the prediction procedure for real flood events of the Jungnang Stream basin, and find the forecasting values to have close agreement with the surveyed data. We therefore expect that this suggested warning scheme could contribute usefully to the setting up of a flood forecasting and warning system for a small to medium-size river basin.

A Cluster-based Power-Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kweon, Ki-Suk;Lee, Seung-Hak;Yun, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.76-90
    • /
    • 2006
  • Sensor network consists of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The life time of each node in the sensor network significantly affects the life time of whole sensor network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all sensor nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Cluster-Based Power-Efficient Routing (CBPER) Protocol which provides scalable and efficient data delivery to multiple mobile sinks. Previous r(luting protocols, such as Directed Diffusion and TTDD, need to flood many control packets to support multiple mobile sinks and many sources, causing nodes to consume their battery. In CBPER, we use the fact that sensor nodes are stationary and location-aware to construct and maintain the permanent grid structure, which makes nodes live longer by reducing the number of the flooding control packets. We have evaluated CBPER performance with TTDD. Our results show that CBPER is more power-efficient routing protocol than TTDD.