• Title/Summary/Keyword: Flooding system

Search Result 429, Processing Time 0.024 seconds

Evaluation of Mitigation Technologies and Footprint of Carbon in Unhulled Rice Production (벼 생산 단계에서 탄소발생량과 감축요소 평가)

  • Lee, Deog Bae;Jung, Soon Chul;So, Kyu Ho;Jeong, Jae Woo;Jung, Hyun Chul;Kim, Gun Yeob;Shim, Gyo Moon
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.129-142
    • /
    • 2012
  • This study was carried out to evaluate carbon footprint during unhulled rice production and to compare mitigation technologies of methane, main carbon source during rice production, Carbon footprint of unhulled rice was a sum of $CO_2$ emission of agri-materials manufacture, rice cultivation and waste treatment. It was emitted 1.40 kg $CO_2$ during unhulled rice production, its distribution was 71.1% by $CH_4$ emission of rice cultivation, 11.8% of $N_2O$ emission by nitrogen application and 7.6% of complex fertilizer manufacture. $CH_4$ emission could be mitigated by some technologies; cultivation of the early maturing rice variety emitted lower by 44.4% than the mid maturing variety, intermittent drainage of submerged water by 43.8% than the continuous flooding condition, direct seeding by 32.0% than transplanting cultivation, no-ploughing by 20.9% than ploughing cultivation. It means that LCA on Global Warming Potential and the statistical data on innovated technical practice are key tools to systemize Measurable-Reportable-Verifiable (MRV) system for carbon footprint and carbon emission trade in the farm base.

Determination of the Optimal Return Period for River Design using Bayes Theory (베이즈 이론을 활용한 적정 하천설계빈도 결정)

  • Ryu, Jae Hee;Lee, Jin-Young;Kim, Ji Eun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.793-800
    • /
    • 2018
  • It is necessary to determine an optimal design frequency for establishing stable flood control against frequent flood disasters. Depending on the importance of river and regional characteristics, design return periods are suggested from at least 50 years up to 200 years for river design. However, due to the wide range of applications, it is not desirable to reflect the geographical and flood control characteristics of river. In this study, Bayes theory was applied to seven evaluation factors to determine the optimal design return period of rivers in Chungcheongnam-do; urbanization flooded area, watershed area, basin coefficient, slope, water system and stream order, range of backwater effect, abnormal rainfall occurrence frequency. The potential flood damage (PFD) capacity was estimated considering climate change and the appropriate design return period was determined by analyzing the capacity of each district. We compared the design return periods of 382 rivers in Chungcheongnam-do with the existing design return periods. The number of rivers that were upgraded from the existing return period were 65, which have relatively large flooding areas and have large PFDs. Whereas, the number of rivers that were downgraded were 169.

Combined Inland-River Operation Technique for Reducing Inundation in Urban Area: The Case of Mokgam Drainage Watershed (도시지역의 침수저감을 위한 내외수 연계 운영 기법 개발: 목감천 유역을 중심으로)

  • Kwon, Soon Ho;Jung, Hyun Woo;Hwang, Yoon Kwon;Lee, Eui Hoon;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.257-266
    • /
    • 2021
  • Urban areas can often suffer flood damage because of the more frequent catastrophic rainfall events from climate change. Flood mitigation measures consist of (1) structural and (2) non-structural measures. In this study, the proposed method focused on operating an urban drainage system among non-structural measures. The combined inland-river operation technique estimates the inflow of pump stations based on the water level obtained from a preselected monitoring point, and the pump station expels the stored rainwater to the riverside based on those estimates. In this study, the proposed method was applied to the Mokgam drainage watershed, where catastrophic rainfall events occurred (i.e., 2010- and 2011-years), and severe flood damage was recorded in Seoul. Using the proposed method, the efficiency of flood reduction from the two rainfall events was reduced by 34.9 % and 54.4 %, respectively, compared to the current operation method. Thus, the proposed method can minimize the flood damage in the Mokgam drainage watershed by reserving the additional storage space of a reservoir. In addition, flooding from catastrophic rainfall can be prevented, and citizens' lives and property in urban areas can be protected.

Establishment of Complex Disaster Scenario on the Utility Tunnel Study for Digital Twin System Application (디지털트윈 시스템 적용을 위한 공동구 복합재난 시나리오 구축)

  • Yon Ha Chung; So Dam Kim;Hyun Jeong Seo;Hojun Lee;Tae Jung Song
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.861-872
    • /
    • 2022
  • The purpose of this study was to establish a complex disaster scenario that can comprehensively consider various disaster situations that may occur in the utility tunnel. Method: In order to comprehensively consider the correlation between disasters, a composite disaster scenario was derived from a combination of damage factors, respectively. A risk assessment was performed in order to derive the priorities of the scenarios. And based on the results, the priorities of complex disaster scenarios were set. Result: Based on the disaster cases in the utility tunnel, a plan was prepared for complex disaster scenarios centered on damage. A complex disaster scenario was specified using a semi-quantitative evaluation method for single and multiple disaster factors such as fire, flooding, and earthquake. Conclusion: The composite disaster scenario derived from this study can be used for the prevention and preparation of damage when the precursor symptoms of a disaster are detected. In addition, the results of this study are expected to be used as basic data for preparing strategic plans and preparing complex disaster response technologies to induce rapid response and recovery in case of emergency disasters.

Evolution and Changes of Coastal Topography due to Jetty Construction at Namdae River Mouth (도류제 건설 후 남대천 하구의 해안선 생성 및 변화)

  • Kim, In Ho;Lee, Seong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.315-321
    • /
    • 2008
  • Recently, in the light of environments and utilization, countermeasures to preserve beaches in coastal area are required without depending on such as jetties and breakwaters. The necessity of integrated sand management including not only coastal sediment but also sediment discharge from hinterland rivers is increased so as to establish long-term counterplan for sediment transport. In this regard, the following subjects are examined in this study; efficient ways for discharged sand to be transported from a river to the neighboring coast, the river terrace occurrence and its growth at the river delta, measures to improve storage efficiency of the discharged sand and measures to prevent the sand resources from being discharged into the deep sea during flooding. In recent, A jetty of 260 m length was constructed at Namdae River mouth in the year of 2005 as a countermeasure against the occurrence of sand-bar at river mouth and its close. In this study, a series of numerical experiments were carried out to investigate the characteristics of sediment transport and morphological change due to the construction of jetty at the entrance of Namdae River mouth. Firstly, The sand discharge from Namdae River is quantified by one-dimensional numerical analysis assuming the mixed sand of three different particle diameters. Then, in order to understand the transport behavior of the sand discharge from river and river mouth phenomena the numerical experiments were then conducted to examine the flow behaviors of river efflux and wind generated circulations in coastal area. And, after establishing the numerical model system, which predicts the sea bed changes obtained from the flux model combining with the wave propagation, wave-induced currents and sediment transport models, the sediment transport in the vicinity of Namdae River mouth is analyzed.

An Experimental Study on the Estimation Method of Overtopping Discharge at the Rubble Mound Breakwater Using Wave-Overtopping Height (월파고를 이용한 사석경사제의 월파량 산정방법에 관한 실험적 연구)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2024
  • Wave overtopping is a significant natural hazard that occurs in coastal areas, primarily driven by high waves, particularly those generated during typhoons, which can cause coastal flooding. The development of residential and commercial areas along the coast, driven by increasing social and economic demands, has led to a concentration of people and assets in these vulnerable areas. This, coupled with long-term sea level rise and an increase in typhoon frequency, has heightened the risk of coastal hazards. Traditionally, the evaluation of wave overtopping volumes has relied on directly measuring the collected volume of water that exceeds the crest height of structures through hydraulic model experiments. These experiments are averaged over a specific measurement period. However, in this study, we propose a new method for estimating individual wave overtopping volumes. We utilize the temporal variation of wave overtopping heights to develop an observation system that can quantitatively assess wave overtopping volumes in actual coastal areas. To test our method, we conducted hydraulic model experiments on rubble mound breakwaters, which are commonly installed along the Korean coast. We introduce wave overtopping discharge coefficients, assuming that the inundation velocity from the structure's crest is the long-wave velocity. We then predict overtopping volumes based on wave overtopping heights and compare and review the results with experimental data. The findings of our study confirm the feasibility of estimating wave overtopping volumes by applying the overtopping discharge coefficients derived in this study to wave overtopping heights.

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea (남해 가막만의 현생퇴적층 발달특성)

  • Kim, So Ra;Lee, Gwang Soo;Choi, Dong Lim;Kim, Dae Choul;Lee, Tae Hee;Seo, Young Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.

Ammonia Volatilization from Coated Urea in Paddy Soil of Direct Seeding Rice Culture (벼 건답직파재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Jeon, Weon-Tae;Son, Il-Soo;Park, Sung-Tae;Lee, Suk-Soon;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.328-333
    • /
    • 2005
  • Ammonia volatilization is the major form of nitrogen (N) loss from flooded paddy soils and causes low N use efficiency. The effects of controlled release fertilizer (latex coated urea complex fertilizer, LCU) on reducing N loss by ammonia volatilization was measured comparing with urea in rice culture system of direct seeding on dry soil. In the treatment of urea, $NH_4-N$ concentration in surface water after flooding increased rapidly up to $8-10mg\;L^{-1}$ as affected by topdressing, while in the LCU treatment $NH_4-N$ concentration in surface water was less than $1mg\;L^{-1}$ during rice growing season. Relation of $NH_4-N$ concentration in surface water and ammonia volatilization was significant in urea treatment. The amount of ammonia volatilized from rice paddy of LCU treatment was $2.4-3.0kg\;ha^{-1}$ and the rate of ammonia volatilization from N fertilizer applied was only 2.0-2.3% compared with 5.9-7.9% in urea treatment. Therefore, N loss by ammonia volatilization could be reduced by 72-76% with by LCU compared with urea in rice culture system of direct seeding on dry soil.

Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula (대암산 고층습원의 환경변천)

  • Yoshioka, Takahito;Kang, Sang-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.45-53
    • /
    • 2005
  • The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.