• Title/Summary/Keyword: Flooding Area

Search Result 427, Processing Time 0.041 seconds

A Study on Flooding Prevention Scheme due to Sea Level Rise at Young-do Coast in Busan (부산 영도 해안의 해수면 상승에 따른 침수대책 연구)

  • Hong, Sung-Ki;Kang, Yong-Hoon;Lee, Han-Seok
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.409-418
    • /
    • 2013
  • On the assumption of the rise of sea level, the inundation vulnerabilities on coastal areas of Korea are evaluated in different ways. The propose of this study is to find out the influences of sea level rise caused by global warming at Young-do coastal area, and to suggest the prevention schemes against the flooding damage caused by the sea level rise. The potential rates of sea level rise are assumed and with these rates the inundation vulnerabilities are simulated using CAD program. With the virtual maps, as the results of the previous CAD simulation, this study attempts to suggest the flood prevention schemes for each sector of damage-expected coastal area.

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

Evaluation of Greenhouse Gas Emissions using DNDC Model from Paddy Fields of 16 Local Government Levels (우리나라 16개 지자체 벼논에서 DNDC 모델을 이용한 온실가스 배출량 평가)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 2014
  • This research was conducted to estimate methane emission from paddy field of 16 local government levels using the DNDC(DeNitrification-DeComposition) model from 1990 to 2010. Four treatments used in DNDC model for methane emission calculations were (1) midseason drainage with rice straw, (2) midseason drainage without rice straw, (3) continuous flooding with rice straw, and (4) continuous flooding without rice straw. Methane emissions at continuous flooding with rice straw were the highest ($471kg\;C\;ha^{-1}$) while were the lowest ($187kg\;C\;ha^{-1}$) at midseason drainage without rice straw. The average methane emission for 21 years was the highest ($1,406Gg\;CO_{2-eq}$.) in Jeonnam province because of its large cultivation area. Jeju province had the highest the average methane emission per unit area due to the organic content in soil.

Energy Efficient Data Dissemination Scheme for Mobile Sink Groups in WSNs (무선 센서 네트워크에서 이동 싱크 그룹을 위한 에너지 효율적인 데이터 전달 프로토콜)

  • Mo, Hee-Sook;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.617-625
    • /
    • 2011
  • In wireless sensor networks, data dissemination protocols have been proposed for mobile sink groups that are characterized by geographically staying closely and collective movement. They usually exploit flooding technology for mobility supporting and data delivery guarantee. However, it causes the excessive energy consumption of all sensor nodes in the group region due to data delivery participation. Moreover, the costs of the flooding would become higher in proportional to the group region. In this paper, we propose an energy efficient data dissemination scheme that resolves these problems. The virtual infrastructure called a 'pipe' is used as a rendezvous area. A source delivers data to the pipe, from which member sinks in the group retrieve it directly. Simulation results showed that this solution has better performance than existing protocols in terms of energy consumption as it reduces the number of regional flooding and eliminates unnecessary data flooding.

The Evaluation of Detention Reservoir Safety using Equi-Flooding Line Theory (등위험도선이론(等危險度線理論)에 의한 유수지(遊水池) 안전도평가(安全度評價))

  • Choi, Song Yeol;Shim, Jae Hyun;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.131-139
    • /
    • 1992
  • Based on the equi-flooding line theory, this study suggests method of evaluating safety of detent tion reservoirs with drainage pumping facilities in Seoul metropolitan area, and derives equi-flooding lines according to destruction frequency for each detention reservoir. In most part of detention reservoirs, its flood prevention are so much dependent upon drainage capacity that inland flooding prevention can be serious problems in case of its malfunction. In this study, the detention reservoirs which are below 5 year destruction frequency estimated as 29.3%, and below 10 year as 39.6% of the total. To improve reservoir safety, the detention reservoir capacities (including drainage and pumping capacity) should be upgraded above 20 year in its destruction frequency, and its reinforcement capacities are calculated.

  • PDF

Study on the Method of Development of Road Flood Risk Index by Estimation of Real-time Rainfall Using the Coefficient of Correlation Weighting Method (상관계수가중치법을 적용한 실시간 강우량 추정에 따른 도로 침수위험지수 개발 방법에 대한 연구)

  • Kim, Eunmi;Rhee, Kyung Hyun;Kim, Chang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.478-489
    • /
    • 2014
  • Recently, flood damage by frequent localized downpours in cities are on the increase on account of abnormal climate phenomena and growth of impermeable area by urbanization. In this study, we are focused on flooding on roads which is the basis of all means of transportation. To calculate real-time accumulated rainfall on a road link, we use the Coefficient of Correlation Weighting method (CCW) which is one of the revised methods of missing rainfall as we consider a road link as a unobserved rainfall site. CCW and real-time accumulated rainfall entered through the Internet are used to estimate the real-time rainfall on a road link. Together with the real-time accumulated rainfall, flooding history, rainfall range causing flooding of a road link and frequency probability precipitation for road design are used as factors to determine the Flood Risk Index on roads. We simulated two cases in the past, July, 7th, 2009 and July, 15th, 2012 in Busan. As a result, all of road links included in the actual flooded roads at that time got the high level of flood risk index.

Software-Defined HoneyNet: Towards Mitigating Link Flooding Attacks (링크 플러딩 공격 완화를 위한 소프트웨어 정의 네트워크 기반 허니넷)

  • Kim, Jinwoo;Lee, Seungsoo;Shin, Seungwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.152-155
    • /
    • 2018
  • Over the past years, Link Flooding Attacks (LFAs) have been introduced as new network threats. LFAs are indirect DDoS attacks that selectively flood intermediate core links, while legacy DDoS attacks directly targets end points. Flooding bandwidth in the core links results in that a wide target area is affected by the attack. In the traditional network, mitigating LFAs is a challenge since an attacker can easily construct a link map that contains entire network topology via traceroute. Security researchers have proposed many solutions, however, they focused on reactive countermeasures that respond to LFAs when attacks occurred. We argue that this reactive approach is limited in that core links are already exposed to an attacker. In this paper, we present SDHoneyNet that prelocates vulnerable links by computing static and dynamic property on Software-defined Networks (SDN). SDHoneyNet deploys Honey Topology, which is obfuscated topology, on the nearby links. Using this approach, core links can be hidden from attacker's sight, which leads to effectively building proactive method for mitigating LFAs.

  • PDF

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.