• Title/Summary/Keyword: Flooding Area

Search Result 432, Processing Time 0.028 seconds

Structure and Physical Property of the Crust of Mid-west Korea: Analysis of Sedimentary Basins in the Namyang and Tando Areas, Kyeonggi Province, Korea (한반도 중서부 지각구조와 물성 연구: 경기도 화성군 남양 및 안산시 탄도지역에 분포하는 퇴적분지의 분석)

  • Park, Sung-Dae;Chung, Gong-Soo;Jeong, Ji-Gon;Kim, Won-Sa;Lee, Dong-Woo;Song, Moo-Young
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.563-582
    • /
    • 2000
  • Two Cretaceous(80-90 Ma) non-marine sedimentary basins, Namyang and Tando Basins, are distributed in the Namyang area, Hwaseonggun and in the Tando area, Ansanshi, Kyungki Province, Korea. The Namyang and Tando Basins are composed of 10 facies, which are pooped into 5 facies associations(FA). FA I consists of massive conglomerate facies, normally graded conglomerate facies and reversely graded conglomerate facies, which is interpreted to have been formed by laminated sandstone facies, massive conglomerate facies(channelized), which is thought to have been formed by sheet flow, stream flow and suspension sedimentation in an alluvial/braided plain environment. FA III consists of massive mudstone(pebbly) facies, laminated mudstone facies, massive sandstone facies and is interbedded by channel-fill conglomerate. It is interpreted to have been deposited by suspension settling during flooding and channel-fill deposition in a floodplain environment. FA IV consists of massive conglomerate facies, normally graded conglomerate facies, massive sandstone facies, normally graded sandstone facies, and laminated sandstone facies and is interbedded with mudstone facies. It is thought to have been deposited by debris flow and turbidity current in a fan-delta environment. FA V consists of massive mudstone facies, laminated mudstone facies, laminated sandstone facies and is interbedded by massive conglomerate bed. It is thought to have been formed by suspension sedimentation and low-density turbidity current in a lake. In the Namyang Basin FA I is distributed in the eastern and southern margin of the basin, FA II in the middle part of the basin as north-south tending band. and FA III in the western part. In the Tando Basin FA II is distributed in the middle part of eastern margin and in the northwestern margin, FA IV in the southwestern part, and FA V in the central part. Correlation of the facies associations shows that FA I and II in the Namyang Basin are distributed in the lower to middle part of stratigraphic sequence and FA III in the upper part of the sequence whereas FA II and IV in the Tando Basin are in the lower to middle part and FA V in the upper part of the sequence. These patterns of facies associations distribution suggest that the Namyang Basin was developed as an alluvial fan and alluvial/braided plain at first and then evolved into a floodplain whereas the Tando Basin was developed as a fan-delta and alluvial/braided plain at first and then evolved into a lake environment.

  • PDF

Investigation of Original Landscaping in the Vicinity of Yongyun and Hwahongmun in Suwon Hwaseong (수원 화성 용연(龍淵)과 화홍문 일곽의 원형경관 탐색)

  • Rho, Jae-Hyun;Choi, Jong-Hee;Shin, Sang-Sup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.94-108
    • /
    • 2010
  • The purpose of this study is to provide data for the restoration of 'Yongyun(龍淵)' and 'Hwahongmun(華虹門)' through an investigation of the vicinity of their original landscapes at the time of construction of Hwaseong in Suwon and through tracing the transformative process of the environments of this vicinity. The results are as follows; As identified by 'Yongyunjung(龍淵亭)' and 'Yongdugak(龍頭閣)', other names of Yongyun, 'Banghwasuryujung(訪花隨柳亭)', which was built on 'Yongduam', is a facility whose place identity is highlighted with a sense of unity with Yongyun. The south lakefront of Yongyun, bordering Banghwasuryujung, has boundaries that make the best use of the natural geographical features of Yongduam while the current circumference of Yongyun is comparatively shorter than its original state. The size of 'Joongdo(中島)', however, seems to be an example of apparent over-design complement and reorganize 'Joongdo', which had been restored larger than its original state at the time of restoration in the 1970s. The depth of 'Yongyun' was created to be lower than the actual depth, without consideration for its initial depth, as soil was accumulated through continuous flooding after it was created. It is assumed that the original drains which were installed about 10m inside the lake were created facing the stream. As regards the planting environment, a circular planting of willows was made in the outskirts of 'Yongyun', except the 'Yongduam' which is a pure forest, and a mix of 'Pinus densiflora', shrubbery and deciduous broad leaf trees was planted in 'Joongdo'. Of the plants growing in the area of this study, plant species introduced to Korea after Hwaseong was constructed are found, most of which provide interest and attraction. The old pine trees growing in a group once grew in the castle areas of the vicinity even in the 1920s, the period of Japanese occupation, but they disappeared from the area in the aftermath of subsequent urban development and the Korean War. Although restored to the site, the number and space taken up by these trees are insignificant compared to those of the original environment. On the basis of these results, the following is considered necessary for the true restoration of the vicinity of 'Yongyun' and 'Hwahongmun': First, the grounds of 'Yongyun' should be dredged deeply enough to expose the bedrock and should be recreated in the rough outline of a half moon by extension to the southwest toward 'Yongduam' and 'Hwahongmun', and the size of 'Joongdo' should be significantly reduced. Secondly, considering that most plant species, except the pine trees and wild trees in 'Yongduam', are non-native plants introduced in order to provide such attractions such as the appreciation of scenic areas, they should be replaced with native species, mainly with the pine trees which were utilized during the construction of Hwaseong. The weeping willows planted in the 'middle-island' should be relocated to the outskirts of 'Yongyun', and replaced with pine trees as the major trees and maple trees or deciduous broadleaf trees to fill in the gaps. Thirdly, exotic species such as the 'Pinus rigida' planted in a group around 'Banghwasuryujung' and 'Bugammun' and 'Pinus strobus' planted in the vicinity of Hwahongmun' should be removed.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Origin, Age and Sedimentation Rate of Mid-Geum River Sediments (금강 중류 하상 퇴적층의 기원과 형성시기 및 퇴적율)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Lim, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • Fluvial sediments are widely distributed in present and old river-beds of the mid-Keum River, the tributaries of which are the Yugu and Jeongan Rivers. The basement of the mid-Keum River area consists of Mesozoic granites which are easily eroded compared to Precambrian gneisses, which are exposed in the upper-Keum River area. The provenance of the fluvial sediments includes both the Precambrian gneisses and Mesozoic granites, which occur in the catchment of the mid-Keum River. The coarse-grained sediments were probably transported from the river-beds and the overbank floodings of the main Keum River and its tributaries when the climate was warm and wet. The oldest mud deposits were dated at ca. 9,400 yr BP by the radiocarbon method. It has been estimated that the sand deposits below the dated muds were formed in a period from the Late Pleistocene to the Early Holocene. However we have revealed that the major part of the present river-bed sediments was formed at ca. 3,000-6,000 yr BP, i.e., in the mid- to late Holocene, when summer monsoon was very strong due to climatic changes. We have calculated fluvial sedimentation rates of 0.12-0.16 cm/yr and 0.02-0.09 cm/yr for borehole KJ-29 river-bed sediments and borehole KJ-28 floodplain deposits, respectively. We conclude that the sedimentation rate is higher near the present stream channel than near the floodplain.

Topographic Placement(Structure) and Macro Benthos Community in Winter for the Shellfish Farm of Namsung-ri, Goheung (고흥 남성리 패류양식장의 지형 구조와 저서생물 현장 조사)

  • Jo, Yeong-Hyun;Kim, Yun;Ryu, Cheong-Ro;Lee, Kyeong-Sig;Lee, In-Tae;Yoon, Han-Sam;Jun, Sue-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • To understand the variation of macro benthos community according to the installation of structure and topographic placement in the shellfish farm on tidal flat, the practical example of the tidal shellfish growing area at Namsung-ri Goheung was observed. The results of the research for the field observation were summarized as follows. (1) The ground gradient of the shellfish farm was very flat below about $1^{\circ}$. The shellfish farm ground took the shape of $\sqcup$ from the shoreline to the place of 150 m seawards, and the shape of $\sqcap$ from there to the low tide line. During ebb tide, the $\sqcup$ shape ground stored the sea water, and the $\sqcap$ shape ground was supposed to act as the effect factor to leak slowly or to prevent the outflow. (2) The oyster shell bag or the type of riprap wall as the boundary in the shellfish farm was classified into five types. The air exposure time and flooding time were 181 and 434 minutes, respectively. (3) In the numerical experiment, the deep-sea water wave coming in the study area had 0.5 m of maximum wave height to show the very stable conditions and the wave direction pattern of S-direction was dominant at Naro great ridge, and SE, SSW and S-direction were distributed strongly around the shellfish farm. (4) By the grain size analysis, the sediment around tidal flat consisted of gravel 0.00~5.81(average 1.70)%, sand 14.15~18.39(average 13.23)%, silt 27.59~47.15(average 30.84)% and clay 35.79~55.73(average 36.19)%, and the sediment type was divided into (g)M(lightly gravelly mud), sM(sandy mud) and gM(gravelly mud) by Folk's diagram. (5) The macro benthos community survey conducted in this site in January, 2010 showed that 1 species of Mollusca, 8 species of Polychaeta and 2 species of Crustacea appeared, and 11 species occupying over 1% of total abundance were dominant.

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.

Assessment of Environmental Impact on the Severely Soil-Eroded Area by heavy Rainfall (집중호우로 인한 토양침식 우심지역 환경영향평가)

  • Hyun, Byung-Keun;Song, Kwan-Cheol;Jung, Sug-Jae;Sonn, Yeon-Kyu;Kim, Lee-Yeol;Kim, Sun-Kwan;Kwak, Han-Kang;Jung, Ji-Ho;Choi, Jung-Won;Jung, Ki-Yeol;Kim, Chun-Sig;Hyun, Geun-Soo;Pyeon, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.118-130
    • /
    • 2007
  • The steep-sloped agricultural land was severely damaged by rainfall events during July and August every year. The objective of this study was to investigate an effects of intensive rainfall to the soil properties of the steep-sloped agricultural land. Survey sites including the Sacheon myeon area were located in Gangneung, those were severely damaged from a forest fire in April 2000. Surveys were taken at these sites after two years of forest fire and severe rainfall events in August 2002, which included an event that poured with 870 mm of rainfall in a day. After this storm, soil erosion, burying, and flooding were observed. Severe soil loss was found at lower soil-depths, greater slopes, longer slope lengths, and concave landscapes. Soil loss and land slides were often found at areas with having a coarser textures, higher bulk densities, lower water holding capacity, and lower rates of soil aggregation. Crop growth stagnation was found at the site of crop restoration because of low soil fertility and poor drainage caused by the abrupt textural changes. In conclusion, it is necessary to manage the steep-slope agricultural land based on environmental impact assessment data of macro morphological and physical characteristics by intensive rainfall.

Distribution of Fish and Amphibian in Rice Fields Near the Yedang Reservoir in Korea (충남 예산군 예당저수지 수변 농경지의 어류와 양서류 분포특성)

  • Kim, Su-kyung;Park, Hyun-Sook;Park, Shi-Ryong
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.48-57
    • /
    • 2016
  • The distribution of fish (Cobitidae and Cyprinidae) and amphibians together with related environmental factors were surveyed at 30 randomly selected rice-fields (15 flooded unmanaged rice fields (FUR) and 15 unflooded managed rice fields (UMR)) near the Yedang reservoir in Korea, eight times from May to August in 2012. The total number of species captured from the entire survey area was 13 species with 8 families of fish and 5 species of amphibians. The number of species of Cyprinidae fish captured in FUR was higher than that in UMR. Upon the comparative analysis on the distribution of fish and amphibians in FUR and UMR, it was found that the number of Cyprinidae fish captured in FUR was significantly higher than that in UMR while the number of Cobitidae fish captured in UMR was higher than that in FUR. According to the analysis on the environmental factors that affect the distribution of fish, Cyprinidae fish tend to appear in rice-fields, that were flooded in winter, near the Yedang reservoir while Cobitidae fish tend to appear in rice fields that draws its water supply from forest reservoir and have a good water drainage system. In case of amphibians, the number of tadpoles captured in UMR was higher than that in FUR. Rana catesbeiana was dominant in FUR and Rana nigromaculata was dominant in UMR. Upon the analysis on the environmental factors that affect the distribution of tadpoles, it was found that Rana catesbeiana tadpoles tend to appear in rice fields, that were flooded in winter, near Yedang reservoir while Rana nigromaculata tadpoles tend to appear near mountains and far from the Yedang reservoir.

Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula (대암산 고층습원의 환경변천)

  • Yoshioka, Takahito;Kang, Sang-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.45-53
    • /
    • 2005
  • The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.