• Title/Summary/Keyword: Flooded evaporator

Search Result 16, Processing Time 0.019 seconds

Measurement of Heat Transfer Coefficient in a Flooded Evaporator through Wilson Plot Method (Wilson Plot을 이용한 만액식 증발기의 열전달계수 측정)

  • 윤필현;강용태;정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.698-706
    • /
    • 2004
  • Heat transfer coefficients of enhanced tubes in a flooded evaporator are measured through Wilson Plot method. And the correlations are proposed to design a flooded evaporators. Overall heat transfer coefficients are composed of the heat transfer coefficients both inside and outside tubes. Usually the experiments have been conducted separately. But there have been many difficulties like setting up the equipments and measuring the wall temperature. Wilson Plot method makes it possible to measure the separated transfer coefficients at the same equipment through experimental skills. So the cost and time can be reduced. And the results are reliable enough to use for design. Heat transfer coefficients inside the tube were able to be correlated uniquely in spite of various outside conditions. Boiling heat transfer of R134a is more dependent on the saturation temperature and much higher than that of R123.

Hysteresis on Boiling Heat Transfer at Low Temperature on Enhanced Tubes in a Flooded Evaporator (만액식 증발기의 열전달 촉진관에서 저온 비등열전달의 이력현상 특성)

  • 윤현필;박종익;정진희;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.254-260
    • /
    • 2003
  • The boiling characteristics for R134a are studied to clarify the hysteresis at low temperature on enhanced tubes of a flooded evaporator. Initial boiling conditions, refrigerant temperature, and inlet temperature of the chilled water are considered as the key parameters of the experiments. Unlike previous studies of the boiling heat transfer with uniform heat flux and uniform wall temperature, the wall temperature was varied along the tube. In, this study, it was found that the hysteresis of the temperature overshoot (705) at the onset of nucleate boiling initially at the inlet section of the tube. It is also concluded that the abnormal operation can be avoided during the low temperature boiling if the refrigeration system is started with LMTD larger than $3.4^{\circ}C$ at initial stage and larger than $1.0^{\circ}C$ at normal stage.

Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants (대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.18-25
    • /
    • 2016
  • Enhanced tubes are used widely in the evaporators of large tonnage compression-type refrigerators. The evaporators consist of tube bundles, and the refrigerant properties are dependent on the locations in the tube bundles. In particular, the saturation temperatures of low pressure refrigerants (R-11, R-123) are strongly dependent on the locations due to the saturation temperature-pressure curve characteristics. Therefore, for the proper design of evaporators, local property predictions of the refrigerants are necessary. In this study, a computer program that simulates the flooded refrigerant evaporators was developed. The program incorporated theoretical models to predict the refrigerant shell-side boiling heat transfer coefficients and pressure drops across the tube bundle. The program adopted an incremental iterative procedure to perform row-by-row calculations over the specified incremental tube lengths for each water-side pass. The program was used to simulate the flooded refrigerant evaporator of the "T" company operating with R-123, which yielded satisfactory results. The program was extended to predict the performance of the flooded refrigerant evaporator operating with R-11, R-123, and R-134a. The effects of bundle aspect ratio are investigated.

Experimental Study on Heat Transfer Characteristics of HFC134a for Enhanced Tubes Used in a Flooded Evaporator (HFC134a 만액식 증발전열관 외부형상 변화에 따른 열전달 특성실험)

  • Yang, Seung-Woo;Lee, Young-Su;Jeong, Jin-Hee;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.971-976
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of pool boiling heat transfer for enhanced tubes used in the evaporator of turbo chiller and to provide a guideline for optimum design of an evaporator using HFC134a. Three different enhanced tubes are tested at 4 different saturation temperatures. The wall super heated temperature difference ranges from $0.5^{\circ}C\;to\;3.5^{\circ}C$. The refrigerant, HFC134a evaporates on the outside of the tube while the chilled water flows inside the tube. This study provides experimental heat transfer coefficients for evaporation on the enhanced tubes. It is found that the turbo-II tube provides the highest heat transfer coefficient.

A Study on Plate & Shell type Evaporator in HVAC System for Offshore Plant (해양플랜트 HVAC 시스템용 플레이트·쉘 타입 증발기에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Chiller systems which have better temperature stability than Direction expansion coils are often used as condensing units in HVAC systems for offshore plants. Large capacity compressors and electronic expansion valves in chiller systems are mostly imported, and the size of a chiller system depends on heat exchangers such as evaporators and condensers which are locally produced. Due to limited space in the offshore plants, shipyards are demanding manufacturers to make equipment compact. In this paper, a shell & tube heat exchanger, which is used as an evaporator in the conventional flooded chiller system, is replaced by a newly developed compact plate & shell heat exchanger. The main development process of the plate & shell heat exchanger is introduced, and its performances were experimentally evaluated with a real flooded chiller system, and the results are presented.

Transient Heat Transfer Analysis on the Evaporator of a Micro-Cooler prior to Roiling (마이크로 쿨러 증발기의 비등 전 과도열전달 해석)

  • Park, Byeong-Gyu;Kim, Geun-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2002
  • It has been investigated for the temperature profile in a planar evaporator of micro-cooler subject to a uniform heat flux prior to tole initiation of boiling. The results of the analysis allow for the determination of applied power levels fur which nucleation is likely to occur only within the vapor grooves of the evaporator while maintaining subcooling in the liquid core, thereby increasing the likelihood of a successful startup. Also, limits are fecund for which additional increases in the applied heat flux do not increase the temperature difference between the vapor grooves and the wick-liquid core interface. This analysis is appropriate for the microscale evaporators of micro-cooler during a fully-flooded startup as well as starter pump designs and micro-CPLs(capillary pumped loops). The results are useful in the initial basic design of microscale heat transfer devices.

Pool Boiling Performance of Enhanced Tubes for a Flooded Evaporator (만액식 증발기용 성형가공관의 풀비등 성능)

  • Kim, Nae-Hyun;Kim, Tae-Hyung;Park, Woon-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, pool boiling performance of Turbo/B-type metal-formed tubes was investigated. Tubes with three different cavity gap width(0.04 mm, 0.07 mm, 0.1 mm) were manufactured and tested using R-11, R-123 and R-134a. Tests were conducted at two different saturation temperatures $4.4^{\circ}C$ and $26.7^{\circ}C.$ Heat flux was varied from 10 kW/m2 to 50 kW/m2. It was found that optimum gap width varied for different refrigerants. For low-pressure refrigerants such as R-11 or R-123, optimum gap width was 0.07 mm. For high-pressure refrigerant R-134a, however, the optimum value was 0.1 mm. Compared with the heat transfer performance of the smooth tube, the metal-formed tubes enhanced the heat transfer coefficients significantly - 6.5 times for R-11, 6.0 times for R-123 and 5.0 times for R-134a (at $4.4^{\circ}C$ saturation temperature and 40 kW/m2 heat flux), which are comparable with the performance of foreign products. The heat transfer coefficients of R-134a were larger than those of R-11 or R-123, and they increased as the saturation temperature increased.

Nucleate Pool Boiling of a Structured Enhanced Tube Used in a Flooded Refrigerant Evaporator

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Choi, Kuk-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2000
  • In this study, pool boiling performance of a structured enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a). Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times larger for R-11, 6.0 times larger for R-123 and 3.5 times larger for R-l34a, which are comparable with the performance of foreign products. The heat transfer coefficients of R-l34a was higher than those of R-11 or R-123, both for the enhanced tube and for the smooth tube. At 4.4$^\circ$C saturation temperature, however, the heat transfer coefficients of R-l34a was approximately the same as those of R-11. The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube-the heat transfer coefficient increased as the saturation pressure increased.

  • PDF

Pool boiling performance of an enhanced tube used in flooded refrigerant evaporator for turbo-refrigerator (터보냉동기용 만액식 증발기에 사용되는 성형가공관의 풀비등 성능)

  • 김태형;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.808-814
    • /
    • 1999
  • Pool boiling performance of a metal-formed enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a), at two different saturation temperatures $4.4^{\circ}C \;and \;26.7^{\circ}C$ .Heat flux was varied from 10㎾/$m^2\;to\ 50㎾/$m^2$. Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times higher for R-11, 6.0 tines higher for R-123 and 3.5 times higher for R-l34a. The enhancements are comparable with those of foreign products. The heat transfer coefficients of R-l34a were higher than those of R-11 and R-123, either for the enhanced tube or for the smooth tube. At $4.4^{\circ}Csaturation temperature, however, the heat transfer coefficients of R-l34a were approximately the same as those of R-11, The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube - the heat transfer coefficient increases as the saturation pressure increases.

  • PDF

Performance Comparison of Flooded Seawater Cooling System with respect to Heat Sink Temperature (열원수 온도에 따른 만액식 해수냉각시스템의 성능 비교)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kang, In-Ho;Kim, Chung-Lae;Seol, Sung-Hoon
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • A fleet consists of a main vessel, light vessels and carrying vessels for purse seine fishery. Carrying vessels contains fish storages to maintain freshness of catches. Currently most carrying vessels applies the cooling system using plain ice though accompanied various shortcomings. Seawater cooling system directly chilling seawater are now in use on carrying vessels in some developed countries to make up for these shortcomings and maximize advantages. This research deals with necessity of seawater cooling systems and establishes system criteria using Aspentech HYSYS program, prior to an experiment of compact-scale seawater cooling system which now in progress of manufacture. Performance comparison on condensation capacity, mass flow rate of working fluid, compressor power input, pump power input and others of the seawater cooling system applying a flooded evaporator is conducted with respect to the temperature of surface seawater varying according to seasons. The result presents that mass flow rate circulating the system is increased about 16.7% as the temperature of surface seawater increases. At the same condition, condensation capacity and compressor input work also increase about 9.8% and 91.2%, respectively.