• Title/Summary/Keyword: Flood-related damage

Search Result 76, Processing Time 0.027 seconds

Flood Simulation of Upriver District Considering an Influence of Backwater

  • Um, Dae Yong;Song, Yong Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.631-642
    • /
    • 2012
  • This study aims to predict inundation and flood-stricken areas more accurately by simulating flood damage caused by reversible flow of rain water in the upper water system through precise 3D terrain model and backwater output. For the upstream of the South Han-River, precise 3D terrain model was established by using aerial LiDAR data and backwater by area was output by applying the storm events of 2002 including the history of flood damage. The 3D flood simulation was also performed by using GIS Tool and for occurrence of related rainfall events, inundation events of the upriver region of water system was analyzed. In addition, the results of flood simulation using backwater were verified by making the inundation damage map for the relevant area and comparing it with flood simulation's results. When comparing with the results of the flood simulation applying uniformly the gauging station's water surface elevation used for the existing flood simulation, it is found that the results of the flood simulation using backwater are close to the actual inundation damage status. Accordingly, the causes of flood occurred in downstream of water system and upstream that has different topographic characteristics could be investigated and applying the simulation with backwater is proved more proper in order to procure accuracy of the flood simulation for the upriver region.

Development and Evaluation of Potential Flood Damage Index for Public Facilities (공공시설물 잠재홍수피해지수 체계 개발 및 평가)

  • Kim, Gilho;Baeck, Seung Hyub;Jung, Younghun;Kim, Kyungtak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.97-106
    • /
    • 2016
  • Since public facilities have high property values and are directly exposed to the flood hazard, they account for the highest share of disaster damages compared to other assets such as housing, industry, vehicle and agriculture in case of floods. Therefore, this study was conducted to develop and suggest the potential flood damage index for public facilities to evaluate potential flood damage of specific local government directly or indirectly as a tool for decision-making related to flood prevention, maintenance, management, and budget allocation. The flood damage assessment system proposed in this study was evaluated in 231 local governments nationwide. Evaluation results showed that higher values were obtained in Seoul metropolitan government, Gyeonggi-do (province), coastal areas in Gyeongsangnam-do (province), and Jeju island.

Study on the Improvement Method of Flood Risk Assessment by Flood Damage Area (홍수피해예상지역을 고려한 홍수위험도 산정기법 개선방안 연구)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyungtak
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • The aim of this study is to improve Potential Flood Damage(PFD) that a flood risk assessment technique used in the National Water Resource Plan comprehensive plan for water resources, which is a top-level plan related to domestic water resources and Flood Risk Indices. Both methods are used to evaluate flood control risks. However, there is a problem of reliability because the problem of data utilization and the damage that occurred in a specific area are applied as an average concept. Therefore, this study improved the method for analysis by components and the flood inundation area was limited to flood damage area. Also, the improvement of the method and the application of the recently provided GIS data to the flood damage prediction area were proposed to improve the usability of the existing method. The existing analysis method and the improved method were applied to the test watershed by each case.

Analysis of the Crop Damage Area Related to Flood by Climate Change Using a Constrained Multiple Linear Regression Model (구속 다중선형회귀 모형을 이용한 기후변화에 따른 농작물 홍수 피해 면적 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • In this study, the characteristics of crop damage area by flooding for 113 middle range watersheds during 2000-2016 were analyzed and future crop damage area by flooding were analyzed using 13 GCM outputs such as hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount associated with RCP 4.5 and RCP 8.5 scenarios and watershed characteristic data such as DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity, and crop damage area by flooding. A constrained multiple linear regression model was used to construct the relationships between the crop damage area by flooding and other variables. Future flood index related to crop damage may mainly increase in the Mankyung watershed, Southwest part of Youngsan and Sumjin river basin and Southern part of Nackdong river basin. Results are useful to identify watersheds which need to establish strategies for responding to future flood damage.

Flood damage cost projection in Korea using 26 GCM outputs (26 GCM 결과를 이용한 미래 홍수피해액 예측)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1149-1159
    • /
    • 2018
  • This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.

A Framework to Estimate GDP Loss due to Extreme Water-related Disaster in Kangwon-do

  • Kang, Sang-Hyeok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.159-166
    • /
    • 2007
  • Large scale flood disasters bring human losses and properties, which lead to the decrease of our productive value and change social environment. Human loss and economic damage are considered to be the same system but they are viewed as separated systems. The total amount of human loss can be represented as the total amount of economic damage estimated in the frame of social system while it will be possible to make mutual changing by clearing the relations between social and economic systems. In this regard, an attempt to estimate economic loss considering per capita Gross Domestic Production (GDP) caused by flood-related mortality was carried out to the typhoon Rusa of 2002 in Kangwon-do. The proposed method tried to capture quantitative factors which are affecting the loss of per capita GDP. The approach has great importance not only to set up governmental policy but also methodological progress in the research due to impact of disaster-related mortality on GDP loss.

Assessment of Human Impact on Mekong River Flood by Using Satellite Nightlight Image

  • Try, Sophal;Lee, Giha;Lee, Daeeop;Thuy, HoangThu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.187-187
    • /
    • 2016
  • High intensity of population distribution in deltaic setting especially in Asia tends to have increased and causes coastal flood risk due to lower elevations and significant subsidence. Maximum or peak discharge of flood always causes numerous deaths and huge economic losses. New technology of spatial satellite image has been applied to analyze flood damage. In this research, the relationship of nightlight intensity associated with flood damages has been determined during 1992-2013 with spatial resolution of 30 arc sec ($0.0083^{\circ}$) which is nearly one kilometer at the equator in whole six countries along the Mekong River (i.e., China, Myanmar, Lao PDR, Thailand, Cambodia and Vietnam). ArcGIS Hydrological Flow Length Tool has been used to determine the distance of each pixel areas from the rivers and streams. Statistical analysis results highlight the significant correlation R = 0.47 between nightlight digital number and economic damages per unit area (US$/km2) and R = 0.62 for number of affected people for unit area ($people/km^2$). The areas near by the Mekong River and its tributaries correspond to high flood damage. This spatial analysis result is going to be prestigious key information to the regions and all related stakeholders for decisions and mitigation strategies.

  • PDF

Risk of Flood Damage Potential and Design Frequency (홍수피해발생 잠재위험도와 기왕최대강수량을 이용한 설계빈도의 연계)

  • Park, Seok Geun;Lee, Keon Haeng;Kyung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.489-499
    • /
    • 2006
  • The Potential Flood Damage (PFD) is widely used for representing the degree of potential of flood damage. However, this cannot be related with the design frequency of river basin and so we have difficulty in the use of water resources field. Therefore, in this study, the concept of Potential Risk for Flood Damage Occurrence (PRFD) was introduced and estimated, which can be related to the design frequency. The PRFD has three important elements of hazard, exposure, and vulnerability. The hazard means a probability of occurrence of flood event, the exposure represents the degree that the property is exposed in the flood hazard, and the vulnerability represents the degree of weakness of the measures for flood prevention. Those elements were devided into some sub-elements. The hazard is explained by the frequency based rainfall, the exposure has two sub-elements which are population density and official land price, and the vulnerability has two sub-elements which are undevelopedness index and ability of flood defence. Each sub-elements are estimated and the estimated values are rearranged in the range of 0 to 100. The Analytic Hierarchy Process (AHP) is also applied to determine weighting coefficients in the equation of PRFD. The PRFD for the Anyang river basin and the design frequency are estimated by using the maximum rainfall. The existing design frequency for Anyang river basin is in the range of 50 to 200. And the design frequency estimation result of PRFD of this study is in the range of 110 to 130. Therefore, the developed method for the estimation of PRFD and the design frequency for the administrative districts are used and the method for the watershed and the river channel are to be applied in the future study.

Development of Rainfall-Flood Damage Estimation Function using Nonlinear Regression Equation (비선형 회귀식을 이용한 강우-홍수피해액 추정함수 개발)

  • Lee, Jongso;Eo, Gyu;Choi, Changhyun;Jung, Jaewon;Kim, Hungsoo
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.74-88
    • /
    • 2016
  • Predicting and estimating the disaster characteristics are very important for disaster planning such as prevention, preparedness, response, and recovery. Especially, if we can predict the flood damage before flooding, the predicted or estimated damage will be a very good information to the decision maker for the response and recovery. However, most of the researches, have been performed for calculating disaster damages only after disasters had already happened and there are few studies that are related to the prediction of the damages before disaster. Therefore, the objective of this study was to predict and estimate the flood damages rapidly considering the damage scale and effect before the flood disaster, For this the relationship of rainfall and damage had been suggested using nonlinear regression equation so that it is able to predict the damages according to rainfall. We compared the estimated damages and the actual ones. As a result, the damages were underestimated in 14.16% for Suwon-city and 15.81% for Yangpyeong-town but the damage was overestimated in 37.33% for Icheon-city. The underestimated and overestimated results could be occurred due to the uncertainties involved in natural phenomenon and no considerations of the 4 disaster steps such as prevention, preparedness, response, and recovery which were already performed.. Therefore, we may need the continuous study in this area for reducing various uncertainties and considering various factors related to disasters.

Development of an Inventory-Based Flood Loss Estimation Method for Rural Areas (인벤토리 기반 농촌지역 홍수손실 평가기법 개발)

  • Kim, Sinae;Lee, Jonghyuk;Jun, Sang-Min;Choi, Won;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.65-78
    • /
    • 2023
  • In recent times, the frequency and intensity of natural disasters, such as heavy rains and typhoons, have been increasing due to the impacts of climate change. This has led to a rise in social and economic damages. Rural areas, in particular, possess limited disaster response capabilities due to their underdeveloped infrastructure and are highly vulnerable to flooding. Therefore, it is crucial to establish preventative and responsive measures. In this study, an Inventory-Based Flood Loss Estimation (IB-FLE) method utilizing high-resolution spatial information was developed for estimating flood-related losses in rural areas. Additionally, the developed approach was applied to a study area and compared with the Multidimensional Flood Damage Analysis (MD-FDA) method. Compared to the MD-FDA, the IB-FLE enables faster and more accurate estimation of flood damages and allows for the assessment of individual building and agricultural land losses using up-to-date information. The findings of this study are expected to contribute to the rational allocation of budgets for rural flood damage prevention and recovery, as well as enhancing disaster response capabilities.