• Title/Summary/Keyword: Flood tidal range

Search Result 42, Processing Time 0.029 seconds

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF

Variability of Seawater Temperature in the Coastal Waters off the Dangjin Power Plant, Asan Bay, Korea (서해 아산만 당진화력발전소 인근해역 수온 변동 특성)

  • Ro, Young-Jae;Jun, Ho-Kyoung;Choi, Yang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This study focused on variability of the sea water temperatures observed off the Dangjin Power Plant in the central west coast of Korea for the period of 1998-1999. Spatial averaged temperature shows the annual range of $20.3^{\circ}C$, with minimum of $3.3^{\circ}C$ in February and maximum of $23.6^{\circ}C$ in August. Horizontal distribution patterns are seasonally reversing: The temperatures are increasing toward inshore of the period of April to October, while they are increasing toward of offshore for the rest of year. Spectral analyses of temperature records show significant peaks at M2 and S2 tidal periods, since the water movement in the study area is influenced by strong tide. The responses of temperature variations to tidal phase show different seasonal characteristics: The temperatures are increasing at flood phases in winter and ebb phases in summer. Amplitudes of the components at M2 and S2 periods are $0.8^{\circ}C\;and\;0.5^{\circ}C$, accounting for 70-80% of daily variation. Coherency analyses between non-tidal components of temperature and wind speed show that in summer, northerly wind components significantly coherent with temperature at 2.8 days period, while in winter, southerly wind component is coherent with 2.4 days period, with 0.6 and 0.7 day phase-lags, respectively.

Numerical Modeling of Circulation Characteristics in the Kwangyang Estuarine System (광양만 권역의 해수순환 수치모델 실험)

  • Kim, Baek Jin;Ro, Young Jae;Jung, Kwang Young;Park, Kwang Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2014
  • The ECOM3D is used to study the circulation characteristics and density current from the Sumjin River runoff in the Kwangyang Estuarine System, South Sea, Korea. Annual mean value of $120m^3/s$ was imposed from the Sumjin River. The numerical model results in terms of tidal height, current and salinity field show satisfactory with skill scores over 90%. The current velocity showed the range of 1~2.5 m/s during flood and ebb phases. In particular, very strong flow occur in the narrow Channels of Noryang, Daebang and Changson exceeding over 2.0 m/s. The tidal residual currents in the various locations in the Kwangyang Estuary showed the range of 1~21 cm/s, The density-driven current through the Yeosu and Noryang Channels are about 12 cm/s and 4 cm/s, respectively. The current path through the Yeosu Channel is deflected toward west Bank. Based on budget analysis of the volume flux, the volume flux through the Yeosu Channel and the Noryang Channel were estimated to be 97.4 and $22.1m^3/s$ accounting for the 81.5% and 18.5% of total flux, respectively.

Denitrification and COD, TN and SS fluxes in Komso Bay, Korea (곰소만에서의 오염물질 플럭스 및 탈질산화)

  • Kim Do-Hee;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.32-41
    • /
    • 2001
  • We measured the fluxes of COD, TN and 55 in addition to composition and quality of sediment in Komso Bay, West Coast of Korea. The fluxes of TN, SS and COD were measured during flood tide and ebb tide in April and August, 2000. Denitrification rates in the sediments was also measured by direct produced $N_2$ gas technique on April and August from 1999 to 2000 in the same sea area. The composition of the sediments were 0.33~5.67 % of sand, 20.2~25.6 of gravel and 68.7~77.0 % of silt. Ignition loss of the sediments were 6.58~7.50 %. The concentration of hydrogen sulfide in the sediments were 0.028~0.326 mg/gㆍdry and oxidation reduction potential of the sediments were -28~-15 mV Diurnal fluxes of COD, total nitrogen, and suspended solids with tidal current and denitrification rate in the tidal flat have been determined in Komso Bay The diurnal net flux of COD was same in April. While 14.4 ton COD/hr of net influx into the tidal flat was recorded in August. The diurnal net influx of total nitrogen was 0.16 ton N/hr in April and 1.13 ton N/hr in August. The diurnal net influx of suspended solids was 0.05 ton SS/hr in April, and also net influx of suspended solids was 0.29 ton SS/hr in August. The overall purification ability of the tidal flat were estimated 0.00~5.69 g COD/$m^2/day$, 0.06~0.45 g N/m²/day and 0.02~0.12 g SS/$m^2/day$ for COD, TN and SS, respectively. Denitrification rate was 0.009~1.720 m mole ${N_2}/m^2/day$ (average 0.702 m mole ${N_2}/m^2/day$) in April and 0.033~0.133 m mole ${N_2}/m^2/day$ (average 0.077 m mole ${N_2}/m^2/day$) in August, 1999. 0.000~l.909 m mole ${N_2}/m^2/day$ (average 0.756 m mole ${N_2}/m^2/day$) in April, 0.000~1.691 m mole ${N_2}/m^2/day$ (average 0.392 m mole ${N_2}/m^2/day$) in August, 2000. Even with a wide range of denitrification rate depending on the sampling location and studied periods, the average denitrification rate was estimated 0.482 m mole ${N_2}/m^2/day$ in the tidal flat of Komso Bay.

  • PDF

A Study on the Movement Distribution of Common Grey Mullet, Mugil cephalus in Funnel Net Fishing Ground of the Yeosu Coastal Sea (여수 연안 승망 어장에서 숭어의 이동 분포에 관한 연구)

  • Kim, Dong-Soo;Joo, Chan-Soon;Park, Ju-Sam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In order to find out the environmental factors influencing movement of common grey mullet, Mugil cephalus in funnel net fishing ground of the Dolsan-do, Yeosu southern sea area, the oceanographic factor such as the water temperature, isobath and tidal current were observed respectively, the water temperature was compared with the amount of common grey mullet caught by funnel net. Also, to investigate the movement direction of common grey mullet in same sea area, 160 common grey mullets of body length 22 to 51cm caught at funnel nets of the Dolsan-do southern sea area were marked and then released at 5 positions in 5 times. The results obtained are summarized as follows : 1. The water temperature at the funnel net fishing ground of Dolsan-do in 2002 was ranged from 6.9 to 27.4$^{\circ}C$. The water temperature was displayed a maximum value in August to increase from March and a minimum value in February of the ensuing year to decrease from September. The catches of gray mullet caught by funnel net were generally abundant from March to September, but decreased sharply from October. The optimum range of water temperature for the funnel nets fishing was situated between 15.0 to 25.0$^{\circ}C$. 2. The isobath from 6m to 13m in coast sea set up funnel nets were densely distributed and the depth more than 14m of isobath were widely spreaded to the open sea at Dolsan-do southern sea area. 3. The tidal current of the coast sea set up funnel nets flowed southward and northward along the coast ato ebb and flood tide respectively. The direction of tidal current to the open sea was southeast at ebb tide with the mean speed 43cm/sec, but northwest at flood with the mean speed 25cm/sec. 4. The recapture rate through the experiment duration showed 9.4%. The recapture rate in Gyedong area was very high value with 33.3% as compared with others. The movement of common grey mullet in Dolsan-do southern sea area trended toward a inner bay and north bound mainly.

Hydraulic Characteristic Analysis of Buoyant Flap Typed Storm Surge Barrier using FLOW-3D model (FLOW-3D 모형을 이용한 부유 플랩형 고조방파제의 수리학적 특성 분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Kim, Jeong Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.140-148
    • /
    • 2014
  • A storm surge barrier is a specific type of floodgate, designed to prevent a storm surge or spring tide from flooding the protected area behind the barrier. A surge barrier is almost always part of a larger flood protection system consisting of floodwalls, dikes, and other constructions. Surge barriers allow water to pass under normal circumstances but, when a (storm) surge is expected, the barrier can be closed. Among the various means of closing, buoyant flap typed storm surge barrier which was indicated by MOSE project in Italy is chosen for Masan bay protection, and the motion of the surge barrier under the action of storm surge and wave is examined using FLOW-3D, a computational fluid dynamics software analyzing various physical flow processes. Numerical result shows that storm surge barrier is successfully operated under wave height 3 m, and tidal range 2 m.

Estimation of Carrying Capacity in Kamak Bay( I ) - Estimation of Primary Productivity Using the Eco-hydrodynamic Model- (가막만의 환경용량 산정( I ) -생태계모델을 이용한 기초생산력 산정-)

  • CHO Eun Il;PARK Chung Kil;LEE Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.369-385
    • /
    • 1996
  • The eco-hydrodynamic model was used to estimate the primary productivity of the oyster culture grounds in Kamak Bay. It is composed of the three-dimensional hydrodynamic model for the simulation of water flow and ecosystem model for the simulation of phytoplankton. The ecosystem model was applied to simulate phytoplankton biomass during culturing period in condition of no oyster culture grounds. The field surveys were conducted from May, 1994 to March, 1995 in Kamak bay. The results showed the concentration of chlorophyll $\alpha$ to be $1.00\~23.28\;{\mu}g/l$ in the surface layer, $1.27\~29.97\;{\mu}g/l$ in the middle layer and $1.23\~23.08\;{\mu}g/l$ the bottom layer. In monthly variations of chlorophyll $\alpha$ concentration, very high concentration were found in July, 1994 and very low concentrations in December, 1994. As the results of three-dimensional hydrodynamic simulation, the computed tidal currents ave mainly toward the inner part of bay through Yeosu Harbor and the southern mouth of a bay during the flood tide. The computed residual currents were dominated southward in Yeosu Harbor and eastward in the mouth of bay and also showed strong clockwise water circulation at the mouth of bay. The pattern between the simulated and observed tidal ellipses at three stations was very similar. The mean relative errors of all levels between the simulated and observed phytoplankton biomass at 14 stations in Kamak Bay were $13.81\%,\;9.31\%\;and\;17.84\%$, respectively. The results of phytoplankton biomass simulation showed that the biomass increased from June to September and rapidly decreased to December and then slowly increased to March. Primary productivity was estimated in the range of $0.99\~10.20gC/m^2/d$ with the average value of $4.43gC/m^2/d$ in condition of no oyster culture grounds. Primary productivity was rapidly increased from lune to August and rapidly decreased to December and then slowly increased from January to March in Kamak Bay.

  • PDF

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Temporal and Spatial Fluctuations of Coastal Water Quality and Effect of Small Tide Embankment in the Muan Peninsula of Korea (무안반도 연안수질의 시ㆍ공간적 변동과 소규모 방조제의 영향)

  • Lee Dae-In;Cho Hyeon-Seo;Lee Gyu-Hyung;Lee Moon-Ok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.24-36
    • /
    • 2003
  • In this study, we estimated the seasonal fluctuations of water quality and effect of small tide embankment in coastal water around the Muan Peninsula, which is located in the northern part of Mokpo city, and layer farming ground is spread around there. Some physical and chemical factors were analyzed to characterize water quality from Jan. to Oct. in 1994. The results were as follows: Dissolved oxygen was slightly under saturation in the almost areas of July, and in some bottom layer at ebb tide of October. Distribution of COD showed high values that over 2㎎/L in October and flood tide of April by the discharge of freshwater and resuspension of benthic sediment, which exceeded water quality criteria II. Maximum values of dissolved inorganic nitrogen ware appeared in surface layer during the flood tide of October, while minimum of that showed in surface layer in April. Concentration of dissolved inorganic phosphorus was higher at July than the others, which ranged from 0.24 to 2.08㎍-at/L. Mostly mean values of N/P ratio were lower than 16, it mean that nitrogen is more limiting nutrient than phosphorus for the growth of phytoplankton. The values of eutrophication index were in the range of 0.07~0.81. However, very high values due to increase of COD were estimated near the tide embankment and southern part in relation to tidal current in October. Water quality around tide embankment was suddenly changed worse within a short period after opening the water gate during the rainfall.

  • PDF

Variations of Temperature and Salinity in Kugum Suro Channel (거금수로 해역의 수온과 염분의 변동)

  • CHOO Hyo-Sang;LEE Gyu-Hyong;YOON Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Temperature and salinity were observed in Kugum Suro Channel in February, April, August and October 1993. Temperature ranged from $7.0^{\circ}C\;to\;25.0^{\circ}C$ throughout the year and its variation was about $18^{\circ}C$. The maximum temperature difference between surface and bottom was less than $0.75^{\circ}C$ for a year, which meant that the temperature stratification in Kugum Suro Channel was considerably week. Salinity had also a small variation range of less than $0.5\%_{\circ}$. Salinity varied from $34.0\%_{\circ}$ in April to $30.0\%_{\circ}$ in August and its fluctuation patterns were quite similar to the seasonal variations of the precipitation and the duration of sunshine observed at Kohung Weather station. Seasonal variation of sea water density in T-S diagram showed that the water mass in Kugum Suro Channel could be largely affected by regional atmospheric conditions. Temperature increased in ebb tide and decreased in flood tide, but salinity decreased in ebb tide and increased in flood tide for a day. The period of fluctuations in temperature and salinity measured for 25 hours was nearly coincident with the semi-diurnal tide which was predominant in that region. Stratification parameters computed in Kugum Suro Channel areas were less than $4.0J/m^3$ the year round, which indicated that vortical mixing from the bottom boundary caused by tidal current played an important role in deciding the stratification regime in Kugum Suro Channel. In estimating the equation which defines stratification and mixing effects in the observed areas, the tidal mixing term ranged from $4.7J/M^3\;to\;14.1J/m^3$ was greater than any other terms like solar radiation, river discharge and wind mixing.

  • PDF