• Title/Summary/Keyword: Flood stage

Search Result 250, Processing Time 0.027 seconds

Estimating Ungauged River Section for Flood Stage Analysis (홍수위 해석을 위한 미측정 하천 단면 추정)

  • Shin, Sat Byeol;Kang, Moon Seong;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Ryu, Jeong Hoon;Park, Jihoon;Lee, Do Gil;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.11-18
    • /
    • 2016
  • The objective of this study was to develop the simple method to estimate ungauged river section for flood stage analysis. Damage prediction should be prioritized using hydrological modeling to reduce flood risk. Mostly, the geographical data using hydrological modeling depends on national river cross-section survey. However because of the lack of measured data, it is difficult to apply to many local streams or small watersheds. For this reason, this study suggest the method to estimate unguaged river cross-section. Simple regression equations were derived and used to estimate river cross-section by analyzing the correlation between the river cross-sectional characteristics (width, height and area). The estimated cross-sections were used to simulate flood level by HEC-RAS (Hydrologic Engineering Center's River Analysis System). The applicability of this method was verified by comparing simulated flood level between measured and estimated cross-section. The water surface elevation of the flood stage analysis was 6.56-7.24 m, 5.33-5.95 m and 6.12-6.75 m for measured cross section, for estimated cross section and for estimated cross section based on DEM elevation, respectively. Further study should consider other factors for more accurate flood stage analysis. This study might be used one of the guidelines to estimate ungauged river section for flood stage analysis.

Effect of Chungju Dam Operation for Flood Control in the Upper Han River (충주댐 방류에 따른 댐 상하류 홍수위 영향 분석)

  • Kim, Sang Ho;Kim, Ji-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.537-548
    • /
    • 2013
  • In this study, the hydraulic channel routing model was constructed to analysis the effect of flood control with the operation of Chungju Dam for 2006 flood. Study area was divided with up- and downstream of Chungju Dam in the upper Han River of Paldang Dam. The model was calibrated and verified for the flood event of 1995-2008. The effects of flood control of Chungju Dam were compared with the simulation results without the dam, and the rising effects of stage in the main observation stations were analyzed by the variation of released dam discharge. Consequently, the operation of Chungju Dam for 2006 flood was performed properly, but the effects of flood control of Chungju Dam were so focused in downstream of the dam that institutional complement was demanded to reduce the flood damage in the upper region of the dam. The limit of decision rule of downstream stage in the backwater region of dam was analyzed to solve the problem, and the decision rule of downstream stage was proposed to consider the discontinuity between the backwater region of dam and the design flood of upper stream. The proposed rule will be used to design the reduction of flood damage in upper stream of dam and to apply the analysis of region for flood damage.

Analysis of Storage and Flood Control Effects by Underflow Type of Multi-stage Movable Weir (하단배출형 가동보의 다단 배치에 의한 저류 및 홍수조절 효과 분석)

  • Lee, Ji Haeng;Han, Il Yeong;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.294-301
    • /
    • 2016
  • The underflow type movable weirs were arranged in a multi-stage way at a section of the Chiseong River, a tributary of Geum River, where flooding is observed frequently. The flood control and the movable weir management levels were compared with the occasions of installing the existing weir for analysis. The peak discharge decreased by a maximum of 97% for the underflow type movable weir, and the downstream flood elevation decreased by a maximum of 82%. The amount of storage also increased by a maximum of 463% by the distribution and storage functions of the multi-stage arrangement of the underflow type movable weirs. It is possible to suggest that the management level of each movable weir for the target storage of the reach and the flood reduction level through the relationship among this storage, downstream peak flood elevation, and peak flow.

Analysis of Flood Stage in a Confluence using the Dynamic Numerical Model (동역학적 수치모형을 이용한 합류부 홍수위 분석)

  • Kim, Ji Sung;Kim, Keuk Soo;Kim, Won;Kim, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.453-461
    • /
    • 2009
  • In this study, a dynamic numerical model, FLDWAV, is used for analyzing the backwater effect of flood stage in YeongWeol station, which is located on the confluence upstream where Pyeongchang river joins Han river. Given various inflow discharges of both main stream and tributary, the feasible stage-discharge relationships at the YeongWeol station and the upstream range of the backwater effect were computed. The results show that the relationships are completely different according to each of the inflow discharges from tributary and the maximum difference of stage is about 4.0 m. Therefore, the development of a single relationship of stage and discharge is very difficult problem in the zone of backwater effect. The increase of stage in the junction due to the lateral inflow has an effect on upstream stage up to about 8.0 km. The well-calibrated and verified dynamic wave routing model will be a useful tool for the flood forecast in the zone of backwater effect rather than conventional hydrological routing model.

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System (신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • The purpose of this study is to develop a real-time forecasting model in order to predict the flood runoff which has the nature of non-linearity and to verify applicability of neural network model for flood warning system. Developed model based on neural network, NRDFM(Neural River Discharge-Stage Forecasting Model) is applied to predict the flood discharge on Waekwann and Jindong stations in Nakdong river basin. As a result of flood forecasting on these two stations, it can be concluded that NRDFM-II is the best predictive model for real-time operation. In addition, the results of forecasting used on NRDFM-I and NRDFM-II model are not bad and these models showed sufficient probability for real-time flood forecasting. Consequently, it is expected that NRDFM in this study can be utilized as suitable model for real-time flood warning system and this model can perform flood control and management efficiently.

Evaluation of Overtopping Risks of Levee by using Reliability Analysis (신뢰성 해석에 의한 제방의 월류 위험도 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Shim, Jae-Wook
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.101-110
    • /
    • 2009
  • Due to frequent occurrence of a localized torrential downpour caused by global warming and change of outflow tendency caused by rapid urbanization and industrialization, risk analysis must be carried out in levee design with uncertainty. In this study, reliability analysis was introduced to quantitatively evaluate the overtopping risk of levee by the uncertainty. First of all, breaking function was established as a function of flood stage and height of levee. All variables of breaking function were considered as random variables following any distribution functions, and the risk was defined as the possibility that the flood stage is formed higher than height of levee. The risk evaluation model was developed with AFDA (Approximate Full Distribution Approach). The flood stage computed by 2-D numerical model FESWMS-2DH was used as input data for the model of levee risk evaluation. Risk for levee submergence were quantitatively presented for levee of Wol-Song-Cheon.

  • PDF

Flood Stage Analysis and Prediction of River Bed Change for Stream Corridor Restoration Model with River Vegetation (하천식생 복원모형의 홍수위 분석과 하상변동 예측)

  • Song, Joong-Geun;Kim, Byeong-Chan;Lee, Jong-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.437-441
    • /
    • 2009
  • The modern times is as special as from the river, the river is very important of our life. The importance to preserve the river environment has been issued and the river developing method is being changed to use potential function of nature as well as flood control. Essential element of the river restoration is a vegetation. The flow resistance by vegetation along the river banks is greatly increase the flood stage. Therefore, the flow resistance due to vegetation in the river and roughness coefficient changes to understand the hydraulic characteristics is an important elements in the river restoration. The purpose of this study is to analyze the flood stage and the aspects of riverbed changes due to the corridor restoration with river vegetation. In order to simulate the flood stage and riverbed changes, HEC-RAS, RMA-2, and SED-2D model were applied for the upstream and downstream in study reaches, respectively.

  • PDF

Flow Analysis of Rivers by using FESWMS-2DH (FESWMS-2DH를 이용한 하천의 흐름 해석)

  • Lee, Cheol-Eung;Shim, Jae-Wook;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.111-122
    • /
    • 2009
  • In this study, flood stage was computed by HEC-RAS, 1-D numerical analysis model and FESWMS-2DH, 2-D numerical model. Flood stages computed by two different models were compared for straight line, dot axle watercourse, dead-zone watercourse, section sudden-changing watercourse, and curved watercourse. From the results, flow velocity and water level were similar in straight watercourse and dot-reduction watercourse. However, there was difference of flow velocity and water level in dead-zone watercourse, sudden expansion, dot-reduction, and curve-watercourse. This result might be influenced by rapid change of watercourse due to dead-zone, the angle of inflow and outflow, and the curvature. Especially in this study, numerical model was applied to Wol-Song-Cheon at Chuncheon in order to analyze the effect of flood stage by two different models. By flowing properties around the bridge and confluence of rivers, it was found that flow velocity and water level was changed. Therefore, it was concluded that a lot of uncertainties are contained in the present bank.

  • PDF