• Title/Summary/Keyword: Flood season

Search Result 249, Processing Time 0.027 seconds

A Root Cause Analysis for Drought in Taeback City, Kangwon-do in 2008 (강원도 태백지역 2008년 가뭄의 원인분석 연구)

  • Kim, Joo-Hwan;Choi, Gye-Woon;Park, Sang-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.351-359
    • /
    • 2010
  • Recently, there have been flood damages due to the climate change and the flash flood continuously in Korea and there are several flood disaster mitigation plans that are normally most of management plan for water related disasters even though drought disasters are as important as flood disasters. In this study, it is underlined that the research on solution of water shortness due to the drought disasters is currently required since the frequency of drought damage is not very many but continuously increasing. There was big drought damage in TaeBaek City of Kangwon province due to the serious lack of water during autumn, 2008 to spring, 2009. This study therefore analyses the characteristics of hydrometeorological conditions by rainfall frequency analysis and the operations of Gwangdong dam that is a source of multi-regional water supply by analysing water demand. As results of study, there was a drought with 20 years returning period which is not really available to fill the reservoir as usual and which could only filled 52% of reservoir. The rainfall during the dry season was less than normal, however, the water demand from the TaeBaek City was higher than normal. As researching several reasons of water shortness including the reasons described above, this study might be useful for drought mitigation plan.

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

Growth Characteristics and Nutrient Contents under Dominant Submerged Plants in Flood Control Reservoir around Dongbok Lake (동복호 저수구역내 주요 침수 분포종별 생육 및 영양염류 함량)

  • Seo, Young-Jin;Lee, Jun-Bae;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Choi, Ik-Won;Lim, Byung-Jin;Kim, Sang-Don;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.836-841
    • /
    • 2012
  • Distributions and growth of submerged plants with water level were investigated in a flood control reservoir around Dongbok Lake. In adddition, the total amount of biomass and uptakes of plants per unit area ($m^2$) in the flood control reservoir were investigated. The total vegetation area was $156,871m^2$ in the Dongbok flood control reservoir ($209,160m^2$) before flooding. By July 11, the Dongbok flood control reservoir was flooded during rainy season except for upper area. Dominant plants were CRXDM (Carex dimorpholepis Steud), ECHCF (Echinochloa crusgalli), POLHY (Polygonum hydropiper L) and BROTE (Bromus tectorum L) which occupied 75% of the flood control reservoir. The total amounts of organic matter uptakes per unit area ($m^2$) with distribution rates by CRXDM, ECHCF, POLHY and BROTE under different submerged plants were 65.5, 6.8, 7.0 and 13.0%, respectively. The total amount of nitrogen uptakes per unit area ($m^2$) with distribution rates at different submerged plants were in the order of CRXDM ($1.30g\;m^{-2}$) > POLHY ($0.34g\;m^{-2}$) > BROTE ($0.30g\;m^{-2}$) > ECHCF ($0.25g\;m^{-2}$). The total amounts of phosphorus uptakes per unit area ($m^2$) with distribution rates at different submerged plants were great in the order of CRXDM (51.8%) > BROTE (17.7%) > POLHY (10.3%) > ECHCF (9.6%). Thus, the results of this study suggest that O.M, T-N and T-P by submerged plants in Dongbok Lake were strongly influenced at water quality in flood control reservoir.

Proposal for Estimation Method of the Suspended Solid Concentration in EIA (환경영향평가에서 부유사 농도 추정 방법 제안)

  • Choo, Tai Ho;Kim, Young Hwan;Park, Bong Soo;Kwon, Jae Wook;Cho, Hyun Min
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • SS(Suspended Solid) concentration by soil erosion into river at normal and flood season should be measured. However, to present the variation of SS due to various development project such as EIA(Environmental Impact Assessment), River Master Plan, and so on, it is necessary to estimate not measure SS, but there are not exist how to estimate SS. In the present study, therefore, we propose the hydrologic method of estimating SS concentration using the results of particular frequency flood discharge and sediment discharge by RUSLE method. SS consists of silty and clay soil and colloid particle etc. However, in the present study, silty and clay soils of sediment discharge except send set up SS standards. The flow discharge to estimate SS concentration are 1~2 years for normal season, 30~100 years for flood season. Meanwhile, analysis software for probable rainfall uses Fard2006, probable rainfalls under 2-year frequency are estimated using rainfall data and frequency factor of Gumbel distribution. The results of estimating SS concentration using runoff volume by sediment and flow discharges of silty and cray soils as above method show that reliable level of SS concentration is considered in predevelopment of natural condition and under development of barren condition. Especially, SS concentration takes notice that the value of sediment discharge makes a huge difference according to channel slope, it was confirmed that the value obtained by dividing the SS concentration by the channel slope is relatively constant even though the topographical factors are different. Therefore, if the present study will be proceeded for various watersheds, it will be developed as estimation method of SS concentration.

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Study on the Ratio of Catchment Area to Benefited Area in Case of Reservior (저수지의 유역대 가리면적비의 연구(I))

  • 김동규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.2
    • /
    • pp.1443-1453
    • /
    • 1968
  • The reservoir is one of the important partsof facilities for development of irrigation water in Korea. Accordingly, construction of the reservoir will be stressed in the field of future development of agricultural water resources. In the meantime, storage capacity is actually is limited to some extent with various conditions. Acreage of benefited area shall be determined according to such conditions as catchment area, precipitation and unit water requirment within benefited area. According to results of the past construction of the reservoir, the ratio of catchment area to benefited area would be 4:1 to 2.5:1 or catchment area is approximately 2.5 times larger and over than benefited area. In order words, it is the ordinary practice in the construction of reservoir that benefited area should be less than 1/2.5 times as large as catchment area. Moreover, limitation of catchment area would prevent largely the vast drought-stricken area from being benefited by irrigation facilites. This has been, in fact, caused by the fact that a good deal of water stored in the reservoir overflows wastefully through spillway of the reservoir at th time of flood season, and that only very little of the overflowed water is available for irrigation. However, if the more wasted water is stored during the flood season, the larger area of farmland can irrigated. That is, catchment area can reduced to less than 2.5 times as large as benefited area. On the other hand, it is afraid that such reduction should bring about the increase of unit storage capacity. And storage capacity being maximized, costs for construction of the reservoir will be raised too highly, thus making the economics feasibility unfavorable. The purpose of this study is to decide the ratio of catchment area to benefited area toward the minimum level as possible in consideration of the hydrological and economic aspects. Kopung Project which is located in Sosan-kun, Chungnam Province is taken as an example for the review and analysis in this study, and as an example for crop, rice is taken. After consideration of this project, we can find out that annual average inflow is 726mm and annual average water requirements is 811mm. And the ratio of catchment area to benefited area is 1.2:1. This means that catchment area can be reduced even to 1.2 times as large as benefited area. In conclusion, this study reveals that the construction of reservoir is feasible in view of economic and technical points provided that catchment area is more than 1.5 times as large as benefited area.

  • PDF

Data processing system and spatial-temporal reproducibility assessment of GloSea5 model (GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가)

  • Moon, Soojin;Han, Soohee;Choi, Kwangsoon;Song, Junghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.761-771
    • /
    • 2016
  • The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.

Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 (CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의)

  • Chung, Se-Woong;Oh, Jung-Kuk;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.655-664
    • /
    • 2005
  • A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{\circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.

Analysis of flow rate-SS discharges characteristics and causes during rainfall season in Daegi-cheon Watershed (대기천 유역에서의 강우기 유량-SS배출 특성 및 원인분석 연구)

  • Kim, Jonggun;Lee, Suin;Park, Byeongki;Won, Chulhee;Kum, Donghyuk;Choi, Joongdae
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • The Daegi-cheon watershed is located in the upper part of the Han River, which has the representative highland vegetable growing complexes. This watershed has a large impact on the water quality and aquatic ecosystem in the upstream of the Han River by discharging a large amount of turbid water during rainfall season. For proposing an efficient turbid water management and policy, the analysis of the characteristics of flow rate and SS and its causes needs to be carried out preferentially. In this study, the relationship between flow rate and SS concentration was analyzed in the Daegi-cheon watershed, and in turn the turbidity characteristics were analyzed. As a result of the study, in the normal flood flow condition, it was shown that SS concentration changed arbitrarily due to various environmental factors. On the other hand, the SS concentration was considerably high in the very high flow condition. Based on the field survey, this could be the reason why the effects of the steep valley and slope collapse according to the very high flow rate as well as the source in the agricultural fields were greatly contributed. Therefore, it is necessary to develop a structural best management practice that can stabilize the steep slope and reduce river bed loss along with the typical source managements plans.

Assessment of water supply reliability under climate stress scenarios (기후 스트레스 시나리오에 따른 국내 다목적댐 이수안전도 평가)

  • Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.409-419
    • /
    • 2024
  • Climate change is already impacting sustainable water resource management. The influence of climate change on water supply from reservoirs has been generally assessed using climate change scenarios generated based on global climate models. However, inherent uncertainties exist due to the limitations of estimating climate change by assuming IPCC carbon emission scenarios. The decision scaling approach was applied to mitigate these issues in this study focusing on four reservoir watersheds: Chungju, Yongdam, Hapcheon, and Seomjingang reservoirs. The reservoir water supply reliablity was analyzed by combining the rainfall-runoff model (IHACRES) and the reservoir operation model based on HEC-ResSim. Water supply reliability analysis was aimed at ensuring the stable operation of dams, and its results ccould be utilized to develop either structural or non-structural water supply plans. Therefore, in this study, we aimed to assess potential risks that might arise during the operation of reserviors under various climate conditions. Using observed precipitation and temperature from 1995 to 2014, 49 climate stress scenarios were developed (7 precipitation scenarios based on quantiles and 7 temperature scenarios ranging from 0℃ to 6℃ at 1℃ intervals). Our study demonstrated that despite an increase in flood season precipitation leading to an increase in reservoir discharge, it had a greater impact on sustainable water management compared to the increase in non-flood season precipitation. Furthermore, in scenarios combining rainfall and temperature, the reliability of reservoir water supply showed greater variations than the sum of individual reliability changes in rainfall and temperature scenarios. This difference was attributed to the opposing effects of decreased and increased precipitation, each causing limitations in water and energy-limited evapotranspiration. These results were expected to enhance the efficiency of reservoir operation.