• Title/Summary/Keyword: Flood management

Search Result 803, Processing Time 0.024 seconds

Analysis of Keywords in national river occupancy permits by region using text mining and network theory (텍스트 마이닝과 네트워크 이론을 활용한 권역별 국가하천 점용허가 키워드 분석)

  • Seong Yun Jeong
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.185-197
    • /
    • 2023
  • This study was conducted using text mining and network theory to extract useful information for application for occupancy and performance of permit tasks contained in the permit contents from the permit register, which is used only for the simple purpose of recording occupancy permit information. Based on text mining, we analyzed and compared the frequency of vocabulary occurrence and topic modeling in five regions, including Seoul, Gyeonggi, Gyeongsang, Jeolla, Chungcheong, and Gangwon, as well as normalization processes such as stopword removal and morpheme analysis. By applying four types of centrality algorithms, including stage, proximity, mediation, and eigenvector, which are widely used in network theory, we looked at keywords that are in a central position or act as an intermediary in the network. Through a comprehensive analysis of vocabulary appearance frequency, topic modeling, and network centrality, it was found that the 'installation' keyword was the most influential in all regions. This is believed to be the result of the Ministry of Environment's permit management office issuing many permits for constructing facilities or installing structures. In addition, it was found that keywords related to road facilities, flood control facilities, underground facilities, power/communication facilities, sports/park facilities, etc. were at a central position or played a role as an intermediary in topic modeling and networks. Most of the keywords appeared to have a Zipf's law statistical distribution with low frequency of occurrence and low distribution ratio.

A Study on the Vulnerability Assessment of Solar Power Generation Facilities Considering Disaster Information (재해정보를 고려한 태양광발전시설의 취약성 평가에 관한 연구)

  • Heejin Pyo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.57-71
    • /
    • 2024
  • This study aims to develop an evaluation method for solar power facilities considering disaster impacts and to analyse the vulnerabilities of existing facilities. Haenam-gun in Jeollanam-do, where the reassessment of existing facilities is urgent, was selected as the study area. To evaluate the vulnerability from a more objective perspective, principal component analysis and entropy methods were utilised. Seven vulnerability assessment indicators were selected: maximum hourly rainfall, maximum wind speed, number of typhoon occurrence days, number of rainfall days lasting more than five days, maximum daily rainfall, impermeable area ratio, and population density. Among these, maximum hourly rainfall, maximum wind speed, maximum daily rainfall, and number of rainfall days lasting more than five days were found to have the highest weights. The overlay of the derived weights showed that the southeastern regions of Haenam-eup and Bukil-myeon were classified as Grade 1 and 2, whereas the northern regions of Hwawon-myeon, Sani-myeon, and Munnae-myeon were classified as Grade 4 and 5, indicating differences in vulnerability. Of the 2,133 facilities evaluated, 91.1% were classified as Grade 3 or higher, indicating a generally favourable condition. However, there were more Grade 1 facilities than Grade 2, highlighting the need for countermeasures. This study is significant in that it evaluates solar power facilities considering urban disaster resilience and is expected to be used as a basic resource for the installation of new facilities or the management and operation of existing ones.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream - (하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 -)

  • An, Seonggi;Lee, Chanjoo;Kim, Yongmin;Choi, Hun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.321-332
    • /
    • 2024
  • Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF

Spatio-temporal Variations in the Dynamics and Export of Large Wood in Korean Mountain Streams (우리나라 산지계류에 있어서 유목 동태의 시.공간적 다양성과 그에 따른 유출 특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Suk Woo;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.333-343
    • /
    • 2012
  • In-stream large wood (LW) has a critical impact on the geomorphic characteristics relevant to ecosystem management and disaster prevention, yet relatively little is known about variations in its dynamics and subsequent export on the watershed-scale perspective in Korea. Here we review variations in the dynamics and subsequent export of LW as a function of stream size, which is appropriate for Korean mountain streams. In upstream channels with narrow bankfull widths and low stream discharges, a massive amount of LW, resulting from forest dynamics and hillslope processes, may persist for several decades on valley floor. These pieces, however, are eventually transported during infrequent debris flows from small tributaries, as well as peak hydrology in main-stem channels. During the transport, these pieces suffer fragmentation caused by frictions with boulders, and stream bank and bed. Although infrequent, these events can be dominant processes in the export of significant amounts of LW from upstream channel networks. In downstream channels with wide bankfull widths and high stream discharges, LW is dominantly recruited by forest dynamics and bank erosion only at locations where the channel is adjacent to mature riparian forests. With the LW pieces that are supplied from the upstream, these pieces are continuously transported downstream during rainfall events. This leads to further fragmentation of the LW pieces, which increases their transportability. With decreasing stream-bed slope, these floated LW pieces, however, can be stored and form logjams at various depositional sites, which were developed by interaction between channel forms and floodplains. These pieces may decay for decades and be subsequently transported as particulate or dissolved organic materials, resulting in the limitation of LW fluvial export from the systems. However, in Korea, such depositional sites were developed in the extremely limited streams with a large dimension and no flood history for decades, and thus it does not be expected that the reduction of LW export amount, which can be caused by the long-term storage. Our review presents a generalized view of LW processing and is relevant to ecosystem management and disaster prevention for Korean mountain streams.

Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model (CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토)

  • Jang, Eun Kyung;Ji, Un;Kwon, Yong Sung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2211-2221
    • /
    • 2013
  • During the four river restoration project, several weirs were constructed in the four rivers to prevent drought and flood, to improve water quality, and to manage water resources. However, due to the weir construction, bed changes are produced in the upstream channel of installed weirs because the incoming flow velocity is reduced and sediment transport capacity is also lowered. Especially, since the Haman Weir is located in the lowest downstream section among newly installed weirs in Nakdong River, bed change and sedimentation problems are expected due to the mild slope and reduced velocity. Therefore, numerical simulation was performed to analyze flow and bed changes in the upstream channel of Haman Weir and to evaluate quantitatively sediment control methods for bed stabilization using CCHE2D model. As a result of flow and bed change simulation after installation of Haman Weir, the flow velocity at the initial condition was faster than the final bed condition with the specific simulation time and it was represented that the locations where bed changes were great were identical for all modeling conditions of flow discharge. In case of 4.5 m of water level lowered from 5.0 m of the management water level at Haman Weir for bed stabilization, the flow velocity was generally faster than the case of the management water level and the continuous erosion was developed at the most narrow channel section as the applied discharge and simulation period were increased. The channel width extension at the most narrow channel section was proposed in this study to prevent and stabilize continuos bed erosion. As a result of numerical analysis, there was no bed erosion after channel width extension and it was presented that the channel geometry extension was effective for bed stabilization at Haman Weir.

Study on the Improvement of Gill Nets and Trap Nets Fishing for the Resource Management at the Coastal Area of Yellow Sea -On the Present States of Gill Nets and Trap Nets Fishing and Body Length Distribution of Main Catch at the Coastal Area of Yellow Sea- (서해구 자원관리형 지망ㆍ통발 어구어법 기술개발에 관한 연구 - 서해구 자망ㆍ통발어업의 현황과 주어획물의 체장분포 -)

  • 장호영;조봉곤;박종수;두성균
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • In order to study on the improvement of gill nets and trap nets fishing for the management of fisheries resource in the coastal area of Yellow Sea, we have investigated the general present condition of those fishing, and the actual fishing operation of gill nets for croaker and trap nets for rock shell which is called the the other trap nets, and then measured the body length of croaker and blue shell caught by their fishing vessels. The results are as follows ; 1. The total number of permission for coastal fishing are 12,944 cases, but the number of operation for coastal fishing are 7,558 cases in the coastal area of Yellow Sea. Among the total number of permission, the gill nets fishing are 5,154 cases with 39.8% but even so the number of operation are 3,724 cases, the trap nets fishing are 1,025 cases with 7.6% but even so the number of operation are 662 cases. On the fishing ratio, the gill nets and trap nets fishing are comparatively higher than the other fishing with 72.3% and 64.6%, respectively. 2. The main fishing period of gill nets for croaker is from the middle of July to early of September, and the main fishing grounds are sandymud bottom of 15-50m in depth around the islands of southern parts of western coastal area, and the fishing operation carry out 1∼2 times per day in flood tide and nets hauling conduct in 1∼2 hours after drifting with current. 3. The distribution range of body length of 139 croakers, which are caught in the gill nets, are 43.0∼120.0㎝ and the mode is 85.0㎝. 4. The main fishing period of trap nets for rock shell which is called the other trap nets is all the year round except the catching period of blue crab from early of September to the middle of October, and the main fishing ground are the sandymud bottom of 10∼20m in depth, and nets hauling conduct in next day after nets casting. 5. The distribution range of maximum carapace of 5,372 rock shells are 4.5∼8.5㎝ and the mode is 7.5㎝.

A Study of a Correlation Between Groundwater Level and Precipitation Using Statistical Time Series Analysis by Land Cover Types in Urban Areas (시계열 분석법을 이용한 도시지역 토지피복형태에 따른 지하수위와 강수량의 상관관계 분석)

  • Heo, Junyong;Kim, Taeyong;Park, Hyemin;Ha, Taejung;Kang, Hyungbin;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1819-1827
    • /
    • 2021
  • Land-use/cover change caused by rapid urbanization in South Korea is one of the concerns in flood risk management because groundwater recharge by precipitation hardly occurs due to an increase in impermeable surfaces in urban areas. This study investigated the hydrologic effects of land-use/cover on groundwater recharge in the Yeonje-gu district of Busan, South Korea. A statistical time series analysis was conducted with temporal variations of precipitation and groundwater level to estimate lag-time based on correlation coefficients calculated from auto-correlation function (ACF), cross-correlation function (CCF), and moving average (MA) at five sites. Landform and land-use/cover within 250 m radius of the monitoring wells(GW01, GW02, GW03, GW04, and GW05) at five sites were identified by land cover and digital map using Arc-GIS software. Long lag-times (CCF: 42-71 days and MA: 148-161 days) were calculated at the sites covered by mainly impermeable surfaces(GW01, GW03, and GW05) while short lag-times(CCF: 4 days and MA: 67 days) were calculated at GW04 consisting of mainly permeable surfaces. The results suggest that lag-time would be one of the good indicators to evaluate the effects of land-use/cover on estimating groundwater recharge. The results of this study also provide guidance on the application of statistical time series analysis to environmentally important issues on creating an urban green space for natural groundwater recharge from precipitation in the city and developing a management plan for hydrological disaster prevention.

RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation (하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1339-1348
    • /
    • 2021
  • In accordance with the River Law, the basic river maintenance plan is established every 5-10 years with a considerable national budget for domestic rivers, and various river surveys such as the river section required for HEC-RAS simulation for flood level calculation are being conducted. However, river survey data are provided only in the form of a pdf report to the River Management Geographic Information System (RIMGIS), and the original data are distributedly owned by designers who performed the river maintenance plan in CAD format. It is a situation that the usability for other purposes is considerably lowered. In addition, when using surveyed CAD-type cross-sectional data for HEC-RAS, tools such as 'Dream' are used, but the reality is that time and cost are almost as close as manual work. In this study, RAUT (River Information Auto Upload Tool), a tool that can solve these problems, was developed. First, the RAUT tool attempted to automate the complicated steps of manually inputting CAD survey data and simulating the input data of the HEC-RAS one-dimensional model used in establishing the basic river plan in practice. Second, it is possible to directly read CAD survey data, which is river spatial information, and automatically upload it to the river spatial information DB based on the standard data model (ArcRiver), enabling the management of river survey data in the river maintenance plan at the national level. In other words, if RIMGIS uses a tool such as RAUT, it will be able to systematically manage national river survey data such as river section. The developed RAUT reads the river spatial information CAD data of the river maintenance master plan targeting the Jeju-do agar basin, builds it into a mySQL-based spatial DB, and automatically generates topographic data for HEC-RAS one-dimensional simulation from the built DB. A pilot process was implemented.