• Title/Summary/Keyword: Flood disaster

Search Result 620, Processing Time 0.033 seconds

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Analysis of change characteristics through estimating the limit rainfall by period (기간별 한계강우량 산정을 통한 변화 특성 분석)

  • Hwang, Jeong Geun;Cho, Jae Woong;Kang, Ho Seon;Lee, Han Seung;Moon, Hye Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.99-99
    • /
    • 2020
  • The frequency and scale of domestic flood damage continues to increase, but the criteria for responding to flood damage have not been established. To this end, research is underway to estimate the amount of rainfall in each region so that it can be used to respond to flood damage. The limit rainfall is defined as the cumulative maximum rainfall for each duration that causes flooding, and this research purpose to improve the threshold rainfall by estimating the damage based on the damage history in units of 5 years and analyzing changes over time. The limit rainfall based on the damage history was estimated by using the NDMS past damage history of the Ministry of the Interior and Safety and the rainfall minutes data of AWS and ASOS. The period for estimating the limit rainfall is 2013 ~ 2017, 2015 ~ 2019, and the limit rainfall is estimated by analyzing the relationship between the flood damage history and the rainfall event in each period. Considering changes in watershed characteristics and disaster prevention performance, the data were compared using 5-year data. As a result of the analysis, the limit rainfall based on the damage history could be estimated for less than about 10.0% of the administrative dongs nationwide. As a result of comparing the limit rainfall by period, it was confirmed that the area where the limit rainfall has increased or decreased This was analyzed as a change due to rainfall events or urbanization, and it is judged that it will be possible to improve the risk criteria of flooding.

  • PDF

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

A Study on the Use of Geospatial Information-Based Simulation for Preemptive Response to Water Disasters in Agricultural Land (농경지 수재해 선제적 대응을 위한 공간정보기반 시뮬레이션 활용 연구)

  • Jung, Jae Ho;Kim, Seung Hyun;Kim, Dae Jin;Yang, Seung Weon
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.52-60
    • /
    • 2022
  • Due to global warming and changes in the natural environment, flood damage to agricultural land due to wind and flood damage continues. Although disaster prevention projects have been continuously carried out since the founding of the country, progress has been insufficient compared to the sustained period, and huge costs are still being consumed. Therefore, it is necessary to use predictive simulation for pre-emptive response to inundation of farmland. In this paper, a case of immersion analysis simulation using a GIS(Geospatial Information System) based SWMM model was introduced, and the validity was confirmed through the error rate between our simulation result and the results of other models in the US and Korea. In addition, in the direction of using the simulation for agricultural land inundation, we presented various utilization methods to supplement the current agricultural land inundation-based information policy, such as the creation of flood traces. If simulation results from more regions are accumulated in the form of the flood analysis maps in the future, it is expected that they will be able to be utilized in various applications for preemptive response to and prevention of water disasters at the national level.

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

The Study for Understanding of Residents to Landslide Mitigation Projects with Respect to develop Socio-Economic Damage Level Standards of Landslide Disasters (산지토사재해 인문사회적 피해강도 기준 개발을 위한 지역주민의 산사태 방재 사업 인식에 대한 연구)

  • Kim, Geunyoung;Lee, Chang-Woo;Kim, Kyongha;Woo, Choongshik;Park, Keunoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.347-357
    • /
    • 2013
  • Abstract The objective of this study is to investigate and analyze understanding of residents living in landslide disaster impact areas to landslide mitigation and recovery projects with respect to develop socio-economic damage level standards of landslide disasters. South Korea is one of the representative mountain-side urbanized countries that cities have been developed through mountain-side urbanization due to high population density because mountain areas occupy 64 percent of the total land proportion. South Korea were recently suffered from the massive landslide disasters with significant causality that overcomes the annual drowned causality of flood disasters. Consequently, the total death toll of South Korea landslide disasters including unexpected Mt. Woo-Myun disaster and Chuncheon disaster in 2011 became forty-three persons. The hugh amount of disaster management budget was spent in landslide mitigation and recovery projects of the affected areas. This research performed facility field research and resident surveys for landslide damage conditions and damage factors for Mt. Woo-Myun, Chuncheon, Pusan, and Dongdoochon that were major effect cities of 2011 landslide disasters.

Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics (재해통계기반 남해연안지역 풍랑피해액예측함수 제안)

  • Choo, Tai-Ho;Yun, Gwan-Seon;Kwon, Yong-Been;Park, Sang-Jin;Kim, Seong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • The natural disasters such as typhoon, earthquake, flood, heavy rain, drought, sweltering heat, wind wave, tsunami and so on, are difficult to estimate the scale of damage and spot. Also, these disasters were being damaged to human life. However, if based on the disaster statistics the past damage cases are analyzed and the estimated damages can be calculated, the initial damage action can be taken immediately and based on the estimated damage scale the damage can be mitigated. In the present study, therefore, we proposed the functions of wind wave damage estimation for the southern coast. The functions are developed based on Disaster Report('91~'14) for wind wave and typhoon disaster statistics, regional characteristics and observed sea weather.

Development of Compression and Transmission Technology of GIS-based High Resolution Image Data in Flood Disaster Situation (홍수재난 상황에서 GIS 기반의 고해상도 영상데이터의 압축 및 전송 기술 개발)

  • Lee, Seung Hyeon;Lee, Eung Joon;Choung, Yun Jae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1038-1045
    • /
    • 2017
  • The increase in frequency and scale of natural disasters is the typical negative examples of the global climate change and the change of the human living environment. The damage caused by natural disasters in particular including human and physical damage is directly linked to the safety and properties of citizens. Besides, damage occurs directly or indirectly to the SOC facility, and the damaged SOC facility violates the citizens' safety rights. Therefore, a plan to provide prompt and effective risk map information by linking a 3D disaster information display system, which handles the information of the damage that may occur to SOC facilities at the time of disasters, with an on-site assistance application is suggested in this study. The prompt provision of risk map information is defined as a dynamic expression technology in this study. It also processes and compresses the system to display disaster information, a spreading system that can utilize on-site information, and a module developed to organically link with the DB system that builds information and relationships. Based on the module, the effective disaster information compression plan will be prepared, and the prompt information transmission system will be secured.

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

Study on Plans to Establish Disaster Safety Villages in Rural Areas by Focusing on Facilities and Spatial Projects (시설과 공간계획을 중심으로 한 농촌지역 재난안전마을 구축방안 연구)

  • O, Hyeji;Lee, Taegoo
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.261-272
    • /
    • 2016
  • The whole world has been damaged by dramatic increase of natural disasters such as localized torrential downpour, earthquake and drought, while suffering from climate changes caused by global warming. In Korea where the continental climate and oceanic one are crossed, the frequency and the size of damages are increased by stronger typhoons and localized torrential downpours and landslides, storms and floods. Therefore, this study analyzed damage cases and their causes and examined foreign plans to prevent natural disasters, by limiting to rural villages where serious damages occur due to typhoons and localized torrential downpours and measures and infra-structures against such disasters are poorly prepared. From the findings, it attempts to suggest some plans to establish disaster safety villages by abstracting plan factors applicable to rural areas in Korea, on the basis of facilities and spatial projects.