• 제목/요약/키워드: Flood control ratio

검색결과 36건 처리시간 0.033초

홍수기 농업용 저수지의 홍수조절용량의 평가 (Evaluation of flood control capacity of agricultural reservoirs during flood season)

  • 장익근;이재용;이정범;김진수
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.

관개저수지의 적정 홍수조절용량 설정방법 (Optimal Flood Control Volume in the Irrigation Reservoir)

  • 김태철;문종필;민진우;이훈구
    • 한국농공학회지
    • /
    • 제40권2호
    • /
    • pp.81-91
    • /
    • 1998
  • Water level of irrigation reservoir during the flood season could be kept to a certain level, so called, flood control level by releasing the flood inflow in advance in order to reduce the peak discharge of next coming flood and the damage of inundation. Concept of restriction intensity of water supply was introduced to evaluate the influence of flood control volume on the irrigation water supply. Restriction intensity can be calculated by multiplying the ratio of restriction to the days of restriction which are obtained from the operation rule curve and daily water level of irrigation reservoir and it has the dimension of % day. The method of restriction intensity was applied to the Yedang irrigation reservoir with the observed data of 30 years to review whether the present flood control volume is reasonable or not, and suggest the optimal flood control volume, if possible.

  • PDF

농업용 저수지의 이·치수 기능을 고려한 홍수기 제한수위 설정 기법 개발 (Determination of Flood-limited Water Levels of Agricultural Reservoirs Considering Irrigation and Flood Control)

  • 김지혜;곽지혜;전상민;이성학;강문성
    • 한국농공학회논문집
    • /
    • 제65권6호
    • /
    • pp.23-35
    • /
    • 2023
  • In this study, we developed a method to determine the flood-limited water levels of agricultural reservoirs, considering both their irrigation and flood control functions. Irrigation safety and flood safety indices were defined to be applied to various reservoirs, allowing for a comprehensive assessment of the irrigation and flood control properties. Seasonal flood-limited water level scenarios were established to represent the temporal characteristics of rainfall and agricultural water supply and the safety indices were analyzed according to these scenarios. The optimal scenarios were derived using a schematic solution based on Pareto front analysis. The method was applied to Obong, Yedang, and Myogok reservoirs, and the results showed that the characteristics of each reservoir were well represented in the safety indices. The irrigation safety of Obong reservoir was found to be significantly influenced by the late-stage flood-limited water level, while those of Yedang and Myogok reservoir were primarily affected by the early and mid-stage flood-limited water levels. The values of irrigation safety and flood safety indices for each scenario were plotted as points on the coordinate plane, and the optimal flood-limited water levels were selected from the Pareto front. The storage ratio of the optimal flood-limited water levels for the early, mid, and late stages were 65-70%, 70%, and 75% for Obong reservoir, 75%, 70-75%, and 65-70% for Yedang reservoir, and 75-80%, 70%, and 50% for Myogok reservoir. We expect that the method developed in this study will facilitate efficient reservoir operations.

다차원 홍수피해산정방법을 이용한 도시지역의 홍수피해액 산정 (Application of Multi-Dimensional Flood Damage Analysis for Urban Flood Damage)

  • 이건행;최승안;김형수;심명필
    • 대한토목학회논문집
    • /
    • 제26권4B호
    • /
    • pp.363-369
    • /
    • 2006
  • 우리나라에서는 치수사업을 추진하기 위한 경제성 분석으로 간편법과 개선법을 사용하여 오다가 현재는 2004년도에 개발된 다차원법(다차원 홍수피해 산정방법(Multi-Dimensional Flood Damage Analysis))을 이용하고 있다. 다차원법은 도시와 농촌 등의 구분없이 일반적으로 이용할 수 있도록 개발되었는데 본 논문에서는 도시지역에 적합하도록 다차원법의 홍수피해 산정 요소들을 보정하여 적용하고자 하였다. 즉, 다차원법에서 제시하고 있는 피해액 산정 항목들 중 도시지역 분석을 위해 일부를 보정 또는 제안하였다. 본 연구에서 제안하는 항목은 배수펌프장의 내수배제능력을 고려해 침수모의를 수행하여 침수 예상지역에 대한 침수심을 산정하는 것이다. 그리고 보정한 항목으로는 산업지역의 피해, 공공시설물의 피해율 등에 대한 것으로 도시지역의 피해액 산정을 위해 수정하여 적용하였다. 도림천의 지하방수로 사업의 비용-편익비를 산정하여 비교한 결과, 다차원법을 이용한 경우 5.51, 본 연구에서 제시한 비주거지역 자산과 공공시설물의 피해율을 이용한 경우는 6.75의 비용-편익비를 추정할 수 있었다. 이는 피해액 항목들 중, 많은 비중을 차지하는 공공시설물피해 항목에 의한 영향의 크기 때문인 것으로 판단된다.

농업용 저수지 둑 높이기에 따른 홍수조절효과 분석 (Effects of Agricultural Reservoir Rehabilitation on their Flood Control Capacities)

  • 전상민;강문성;송인홍;황순호;김계웅;박지훈
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.57-68
    • /
    • 2013
  • About 74 % of reservoirs in Korea are older than 40 years and their storage capacities have been decreased substantially. As part of reservoir reinforcement, the dam heightening project has been ongoing for about 110 reservoirs. The main purpose of the dam heightening project is to secure additional environmental water, while improving flood control capacity by gaining additional storage volume. The objective of this study was to evaluate reservoir flood control capacity changes of dam heightening reservoirs for effective management of additional storage volume. In this study, 13 reservoirs were selected for reservoir simulation of 200 year return period floods. Rainfall data of 1981-2100 were collected and divided into 4 periods (1981-2010; 1995s, 2011-2040; 2025s, 2041-2070; 2055s, 2071-2100; 2085s). Probability rainfalls and 200yr design floods of each period were calculated using FARD2006 and HEC-HMS. Design floods were used as inputs of each reservoir simulation using HEC-5. Overall, future probability rainfalls and design floods tend to increase above the past 1995s. Control ratios were calculated to evaluate flood control capacities of reservoirs. As a result, average flood control ratios were increased from 32.6 % to 44.2 % after dam heightening. Control ratios were increased by 12.7 % (1995s), 12.4 % (2025s), 10.3 % (2055s) and 10.9 % (2085s). The result of this study can be used as a basis for establishing the reservoir management structure in the future.

수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가 (Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season)

  • 정형모;이상현;김경환;곽영철;최은혁;윤성은;나라;주동혁;유승환;윤광식
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

탁수조절을 위한 소양호 선택취수설비 설치 효과 분석 (Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir)

  • 정세웅;박형석;윤성완;류인구
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Machine Learning for Flood Prediction in Indonesia: Providing Online Access for Disaster Management Control

  • Reta L. Puspasari;Daeung Yoon;Hyun Kim;Kyoung-Woong Kim
    • 자원환경지질
    • /
    • 제56권1호
    • /
    • pp.65-73
    • /
    • 2023
  • As one of the most vulnerable countries to floods, there should be an increased necessity for accurate and reliable flood forecasting in Indonesia. Therefore, a new prediction model using a machine learning algorithm is proposed to provide daily flood prediction in Indonesia. Data crawling was conducted to obtain daily rainfall, streamflow, land cover, and flood data from 2008 to 2021. The model was built using a Random Forest (RF) algorithm for classification to predict future floods by inputting three days of rainfall rate, forest ratio, and stream flow. The accuracy, specificity, precision, recall, and F1-score on the test dataset using the RF algorithm are approximately 94.93%, 68.24%, 94.34%, 99.97%, and 97.08%, respectively. Moreover, the AUC (Area Under the Curve) of the ROC (Receiver Operating Characteristics) curve results in 71%. The objective of this research is providing a model that predicts flood events accurately in Indonesian regions 3 months prior the day of flood. As a trial, we used the month of June 2022 and the model predicted the flood events accurately. The result of prediction is then published to the website as a warning system as a form of flood mitigation.

자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석 (Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section)

  • 류지원;지운;김상혁;장은경
    • 대한토목학회논문집
    • /
    • 제43권6호
    • /
    • pp.735-747
    • /
    • 2023
  • 최근 기후변화로 인한 극한홍수 피해가 급증하고 있어 기존의 홍수관리시설만으로는 홍수피해에 제대로 대응하기 어려운 상황에 직면하고 있다. 이에 본 연구는 이러한 문제에 대처하기 위해 홍수 관리의 자연성 기반 접근 방법 중 하나인 제방 후퇴 및 이설의 효과를 분석하였다. 이를 위해 1차원 수치모델 HEC-RAS를 사용하여 100년 빈도 홍수에 대한 홍수위 및 유속 변화 그리고 최대 홍수위 발생 시점에 대해 분석하였다. 식생 조성 등의 자연성기반 홍수완충공간의 조성 환경 특성을 고려한 조도계수의 선택은 홍수위 변화 분석 결과에 민감하기 때문에 엄격한 기준과 과학적 근거를 기반으로 하였다. 분석결과, 자연기반해법의 홍수완충공간 조성에 따른 홍수위 저감 효과는 상류 구간에서 더 크게 나타났으며, 최대 30 cm의 홍수위가 저감되었다. 일부 홍수터 확장구간에서는 국부적으로 홍수위가 상승하는 현상이 나타나며, 유속 변화는 확장된 통수단면적의 비율에 따라 다양하게 나타났다. 이를 통해 제방 후퇴와 홍수터 확장은 홍수 관리의 효과적인 대안으로 고려될 수 있을 것으로 기대되며, 홍수위 변화, 유속 변화 및 최고 수위 발생 시점에 대한 종합적인 설계가 필요할 것으로 판단된다.

소규모 유역에서 자연방류형 단일저류지의 임계지속기간 분석 (The Analysis of Critical Duration of uncontrolled single detention facility in Small Catchment)

  • 박종영;신창동;이정식
    • 한국방재학회 논문집
    • /
    • 제5권2호
    • /
    • pp.17-28
    • /
    • 2005
  • 본 연구의 목적은 소규모 유역에서 홍수 저류시설물과 홍수 조절시설물 사이의 임계지속기간을 평가하는데 있다. 4개 소규모 유역을 통하여 수문분석을 실시하였으며, 유효우량은 NRCS 유효우량 산정방법으로 산정하였다. 홍수 저류시설물과 홍수 조절시설물의 임계지속기간은 허용방류량 고정개념을 이용하여 평가하였다. 허용방류량 고정개념을 이용한 경우 최대 저류비를 발생시키는 시간분포는 Huff 2분위 시간분포로 나타났으며, 자연방류형 단일저류지에서 홍수 조절시설물의 임계지속기간은 홍수 저류시설물의 임계지속기간과 유사한 것으로 나타났다.