• Title/Summary/Keyword: Flood area

Search Result 1,171, Processing Time 0.033 seconds

Comparison of Flooding Area Estimation using GIS and Hydraulic Model (GIS와 수리모형을 이용한 홍수지역예측 비교)

  • Kim, Seok-Gyu;Song, In-Ho;Kim, Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.183-192
    • /
    • 2006
  • In recent years, the damage caused by flood has been gradually increased. The cause of the flood is unusual weather condition as well as topographical and geographical condition of our country. Flood area analyzing vulnerable flood areas on large regions without previous flood records were developed using GIS and hydraulic model, flood depth by return periods and topographical data such as DEM. The study area is the Munsan river basin. The results using GIS comparing the results using hydraulic model. The results in this study can be used to delineate the potential flooding areas in large regions and the damage from disasters can be reduced by making provisions with the obtained results.

  • PDF

The Investigation and Analysis of Field Condition on Flood Protection Equipment of Transformer Vault in Flood Area (침수지역에서 수·변전설비 침수방지시설에 관한 현장실태 조사 및분석)

  • Kim Gi-Hyun;Kim Chong-Min;Kim Sun-Gu;Hwang Kwang-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-90
    • /
    • 2005
  • Inundation of Transformer Vault breaks out every summer season in low-tying downtown and low-tying shore by localized heavy rain, typhoon and tidal wave. In case inundation of Transformer Vault, it occurs a great economic loss owing to recovery time and events of electric shock occur by inundation electrical facility. So we need installation plan of Transformer Vault in common flood area for preventing from economic loss and equipment events. Therefore we research distribution of 22.9[kV] Transformer Vault in common flood of the country and analyze field condition about flood protection plan. And we analyze regulation or law relating to the flood protection counterplan of US, England, Australia. This paper will be used to present a reform proposal of electrical related law about flood protection of existing Transformer Vault. Also we present considering facts at the time Transformer Vault installation in common flood area.

Determination of Floodplain Restoration Area Based on Old Maps and Analysis on Flood Storage Effects of Flood Mitigation Sections (고지도를 활용한 홍수터 복원 구역 선정 및 홍수완충공간의 홍수 저류효과 분석)

  • Dong-jin Lee;Un Ji;Sanghyuk Kim;Hong-Kyu Ahn;Eun-kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.40-49
    • /
    • 2023
  • To reduce the damage of extreme flooding caused by climate change and to create flood mitigation sections in a nature-friendly riparian area, it is necessary to restore the floodplain area by referring to the past floodplain section of the current inland waterfront area before the levee was built. This study proposed a method of selecting a location for floodplain restoration using old maps of the Geum River study section and analyzed the effect of flood level reduction through unsteady flow numerical simulations using the floodplain as a flood mitigation space. As a result of analyzing changes in the river areas using old maps, the river section was estimated to gradually reduce by 27.8% (1,059,380 m2) in 2020 compared to 1919, and it was found to have an effective storage capacity of 2,200,868 m3 when restored to offline storage. The flood level and discharge control effects analyzed based on HEC-RAS unsteady flow simulation were 16 cm and 219.01 m3/s, respectively, in the downstream cross-section. In the numerical simulation in this paper, the flood mitigation space was applied as an offline reservoir. The effect of reducing the flood level may differ if levee retreat/relocation is applied.

Optimal Gate Operation and Forecasting of Innundation Area in the Irrigation Reservoir (관개저수지의 최적수문조작과 침수구역 예측)

  • 문종필;엄민용;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.486-492
    • /
    • 1999
  • One of the purpose of the reservoir operation is minimizing theinnudation area in the downstream reaches during flood period.l To execute the gate operation properly , it requires lots of real-time data such as rainfall, reservoir level, and water level in the downstrea. Gate operation model was developed with the flood discharge obtained from real-time flood forecasting model and the criterion prepared from the past history of gate operation. Water level in the downstream would be increased by the releasing discharge from the spillway and the area of paddy land flooded in a certain detph and time would be estimated usnig GIS map. Gate operation model was applied to the Yedang reservoir, and the flooded area, depth and time in the paddy land was estimaged.

  • PDF

Flood and Adaptation of Insect at the Freshwater Wetland (담수습원의 범람과 곤충의 적응)

  • Park, Hee Cheon;Woen Kim;Chong Un Ri
    • The Korean Journal of Ecology
    • /
    • v.8 no.4
    • /
    • pp.205-214
    • /
    • 1985
  • At the Changnyeung natural bod, the flood in the freshwater wetland and the adaptation of the insect at this area were investigated by the species diversity index and the cluster analysis. Most dominant species was Diplonychus esakii collected at the site of the water edge and its dominance index was 0.797. This area had lower species diversity indices with the value of 0.340 to 1.712 than that of the grassland and water stream. The number of the species in this area was not rich. Some ground beetles inhabited at the flooded or wet area were important species for the pair group between the sites by the cluster analysis. The composition of the insect species at this natural wetland affected by the irregular flood was very simple and specific.

  • PDF

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

Design Flood Estimation in the Hwangguji River Watershed under Climate and Land Use Changes Scenario (기후변화 및 토지이용변화 시나리오를 고려한 황구지천 유역의 설계홍수량 평가)

  • Kim, Jihye;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • Extreme floods occur more often recently as the frequency of extreme storm events increase due to the climate change. Because the extreme flood exceeding the design flood can cause large-scale disasters, it is important to predict and prepare for the future extreme flood. Flood flow is affected by two main factors; rainfall and land use. To predict the future extreme flood, both changes in rainfall due to the climate change and land use should be considered. The objective of this study was to simulate the future design flood in the Hwangguji river watershed, South Korea. The climate and land use change scenarios were derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. Conversion of land use and its effects (CLUE) and hydrologic modelling system (HEC-HMS) models were used to simulate the land use change and design flood, respectively. Design floods of 100-year and 200-year for 2040, 2070, and 2100 under the RCP4.5 and 8.5 scenarios were calculated and analyzed. The land use change simulation described that the urban area would increase, while forest would decrease from 2010 to 2100 for both the RCP4.5 and 8.5 scenarios. The overall changes in design floods from 2010 to 2100 were similar to those of probable rainfalls. However, the impact of land use change on design flood was negligible because the increase rate of probable rainfall was much larger than that of curve number (CN) and impervious area.

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.