본 연구는 상습적으로 도시침수 피해를 입은 지역을 대상으로 도시 홍수 예 경보를 위한 강우 시나리오별 사전 침수면적 데이터베이스를 구축하고 강우강도에 따른 침수예상도를 작성하여 기상청 최대강우량 예보와 함께 홍수위험지역을 사전에 예보할 수 있는 방법을 제안하고자 한다. 데이터베이스 구축을 위하여 1D-2D 모형 구축을 실시하고 실제호우사상에 대한 검증을 완료한 다음 시나리오별 해석을 실시하였다. 2010년 9월 21일에 대상유역에 내린 강우사상에 대한 2D 해석결과를 NDMS 자료와 비교 분석 하였다. NDMS 신고지점은 총 118지점에서 신고가 되었으며, 2D 침수해석 결과 82개 지점이 계산결과에 포함되었다. NDMS 신고 지점과 2D 침수해석 결과에 대하여 적합도를 계산한 결과 69.5%의 적합도로 분석되었다. 사전 침수 데이터베이스를 이용하여 침수예상도를 작성하였으며, 70mm의 침수예상도의 경우 NDMS 신고 지점과 70.3%의 적합도를 가졌으며, 80mm의 침수예상도의 경우 72.0%의 적합도를 가지는 것으로 분석되었다. 구축된 사전 침수면적 데이터베이스를 이용하여 기상예보와 함께 침수예상도 정보를 함께 제시할 수 있으며 침수 예 경보 시 선행시간을 확보할 수 있다.
The purpose of this study is to estimate the critical flood discharge and flash flood trigger rainfall for alarm system providing for a flash flood in mountainous. This study was effectively estimated a topographic characteristic factor of basin using the GIS. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. Result that calculate threshold discharge to use GCIUH, at the Mureung valley basin, flash flood trigger rainfall was 16.34mm in the first 20 minutes when the threshold discharge was $14.54\;m^3/sec$.
In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.
In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.
본 연구의 목적은 수치모형에 의해 이론적으로 산출된 기존 홍수도달 시간표를 보완하여 정확한 홍수도달시간을 예측, 산정하기 위한 기술을 연구하고 제시하는데 있다. 이를 위해 u-IT 기술을 적용한 센서 부자를 이용하여 남한강 하천의 유출량에 따른 도달시간 측정을 시행하였으며, 계측 결과를 토대로 현재 활용하고 있는 산출식에서 고려하지 않았던 지류의 유입량을 고려한 유출량별 평균도달시간 관계식을 보완, 제시하였다. 본 연구를 통해 기존 홍수예경보 자료를 보완할 수 있는 u-IT 기반 실측기술을 개발하고, 이를 유출량-평균도달시간 산정에 적용할 수 있는 기반을 구축함으로써 홍수피해 절감 등의 효과를 기대할 수 있을 것으로 판단된다.
실시간 홍수예측시스템의 구성에서 장래 강우 양상(지속기간, 강우강도 등)에 대한 가정으로 인하여 홍수예측의 신뢰성을 높이기 어려웠다는 점을 해결하기 위하여 현재까지의 강우, 현재수위 및 상류지역의 수위를 기반으로 홍수를 예측할 수 있는 간단한 웹기반모형을 구성하였다. 대상유역인 대전광역시의 도심하천 구간에서 각 수위 및 강우관측소들 간의 자료들을 활용하고, 현재까지의 관측 자료들을 이용하여 최대 2시간 후의 수위변화를 예측할 수 있는 회귀분석 모형을 구성하였다. 자료의 전송은 MS-Excel 2007을 기반으로 하여 금강홍수통제소와 국가수자원관리 종합정보홈페이지의 강우 및 수위자료를 실시간으로 읽어오는 방식으로 자료를 연결하였다. 각각의 선행시간에 대하여 예측한 결과 실제 실측치를 예측하는 과정에서 표준편차가 최대 5 cm, 평균 표준편차가 1~4 cm에 머무르고 있는 점 및 수정 결정계수의 값이 대부분 0.95 이상을 나타내는 점 등을 살펴보면 전체적으로 예보모형이 안정적으로 운영이 되고 있음을 알 수 있었다. 다만 본 회귀모형의 특성이 유역반응의 정상성을 가정하여 구성된 것을 감안한다면 어느 정도 기간까지 정상성을 유지할 수 있는가의 문제 및 시계열분석 기법의 적용은 추후 연구가 더욱 필요할 것으로 보인다.
Reta L. Puspasari;Daeung Yoon;Hyun Kim;Kyoung-Woong Kim
자원환경지질
/
제56권1호
/
pp.65-73
/
2023
As one of the most vulnerable countries to floods, there should be an increased necessity for accurate and reliable flood forecasting in Indonesia. Therefore, a new prediction model using a machine learning algorithm is proposed to provide daily flood prediction in Indonesia. Data crawling was conducted to obtain daily rainfall, streamflow, land cover, and flood data from 2008 to 2021. The model was built using a Random Forest (RF) algorithm for classification to predict future floods by inputting three days of rainfall rate, forest ratio, and stream flow. The accuracy, specificity, precision, recall, and F1-score on the test dataset using the RF algorithm are approximately 94.93%, 68.24%, 94.34%, 99.97%, and 97.08%, respectively. Moreover, the AUC (Area Under the Curve) of the ROC (Receiver Operating Characteristics) curve results in 71%. The objective of this research is providing a model that predicts flood events accurately in Indonesian regions 3 months prior the day of flood. As a trial, we used the month of June 2022 and the model predicted the flood events accurately. The result of prediction is then published to the website as a warning system as a form of flood mitigation.
An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.
In recent years, there is a remarkable progress in ICTs (Information and Communication Technologies), and then many attempts to apply ICTs to other industries are being made. In the field of disaster managements, ICTs such as RFID (Radio Frequency IDentification) and USN (Ubiquitous Sensor Network) are used to provide safe environments. Actually, various types of early warning systems using USN are now widely used to monitor natural disasters such as floods, landslides and earthquakes, and also to detect human-caused disasters such as fires, explosions and collapses. These early warning systems issue alarms rapidly when a disaster is detected or an event exceeds prescribed thresholds, and furthermore deliver alarm messages to disaster managers and citizens. In general, these systems consist of a number of various sensors and measure real-time stream data, which requires an efficient and rapid data processing technique. In this study, an event-driven architecture (EDA) is presented to collect event effectively and to provide an alert rapidly. A publish/subscribe event processing method to process simple event is introduced. Additionally, a complex event processing (CEP) technique is introduced to process complex data from various sensors and to provide prompt and reasonable decision supports when many disasters happen simultaneously. A basic concept of CEP technique is presented and the advantages of the technique in disaster management are also discussed. Then, how the main processing methods of CEP such as aggregation, correlation, and filtering can be applied to disaster management is considered. Finally, an example of flood forecasting and early alarm system in which CEP is incorporated is presented It is found that the CEP based on the EDA will provide an efficient early warning method when disaster happens.
최근 국내에서는 집중호우로 인해 홍수피해가 자주 발생하고 있으며 피해규모가 증가하고 있다. 특히 도시지역은 인구와 재산이 밀집되어 있어 홍수에 매우 취약한 지역이며, 매년 하수관거 설계빈도 이상의 강우 발생 등으로 인해 내수침수 피해가 발생하고 있다. 각 지자체에서는 홍수피해 저감을 위해 기상청에서 전국적으로 동일한 강우기준에 따라 발령하는 호우특보를 통해 홍수피해 대비 및 대응을 실시하고 있다. 하지만 서울특별시는 25개 자치구가 밀집되어 있지만 자치구별로 기후, 지형, 방재 등 지역특성 및 홍수피해 특성이 상이한 실정이다. 이에 따라 본 연구에서는 서울특별시 25개 자치구를 대상으로 지역특성을 고려한 엔트로피 가중치 및 유클리드 거리를 활용하여 자치구별 홍수취약도를 산정하고, 확률강우량 및 과거 홍수피해 강우량을 기반으로 강우기준을 산정하였다. 그 결과 자치구별 2단계 강우기준은 기상청의 호우주의보 기준, 4단계 강우기준은 호우특보 기준과 크게 차이가 나지 않는 것으로 분석되었다. 또한 기후노출이 높고 적응도가 낮은 서울 북부지역이 상대적으로 홍수취약도가 높아 강우기준이 낮게 산정되었다. 이에 따라 서울 북부지역은 상대적으로 낮은 강우기준에 따라 선제적으로 홍수대응이 가능할 것으로 판단된다. 향후 지역특성 및 피해특성을 고려하여 산정된 자치구별 강우기준을 활용하여 기상예측자료의 적용성을 검토하고, 선제적인 홍수대응방안 마련을 위한 연구를 수행할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.