• Title/Summary/Keyword: Flood Situation

Search Result 107, Processing Time 0.03 seconds

A Study on the Development of a Dam Operation Table Using the Rainfall Matrix (강우 매트릭스를 활용한 댐 운영 조견표 개발에 관한 연구)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.39-51
    • /
    • 2020
  • Recently, flood damage has been increasing in Korea due to frequent local torrential rains caused by abnormal weather conditions. According to the calculation of the recurrence period of torrential rain that occurred in North Chungcheong Province on July 16, 2017, it was estimated that the rainfall frequency in the upper are of Goessan Dam was around 1,524 years, and the highest level of Goesan Dam rose to EL.137.60 meters, leaving only 5 cm of margin until the height of the dam floor (EL.137.65 meters). The Goesan Dam, which operated for 62 years since 1957, needs to be prepared to cope with the increase of floodgate volume in the basin, the development of a single purpose dam for power generation only, and there are no measurement facilities for flood control, so efficient operation methods are needed to secure the safety of residents in upper and lower regions. In this study, a method of dam operation was proposed by constructing a rain matrix for quick decision making in flood prediction, calculating the highest level of dam for each condition in advance, and preparing a survey table, and quickly finding the level corresponding to the conditions in case of a situation.

A Study on the Interpretalion of the Synthetic Unit Hydrograph According to the Characteristics of catchment Area and Runoff Routing (유역 특성과 유출추적에 의한 단위도 해석에 관한 고찰)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1088-1096
    • /
    • 1966
  • The following is a method of synthetic unitgraph derivation based on the routing of a time area diagram through channel storage, studied by Clark-Jonstone and Laurenson. Unithy drograph (or unitgraph) is the hydrograph that would result from unit rainfall\ulcorner excess occuring uniformly with respect to both time and area over a catchment in unit time. By thus standarzing rainfall characteristics and ignoring loss, the unitgraph represents only the effects of catchment characteristics on the time distribution of runoff from a catchment The situation abten arises where it is desirable to derive a unitgraph for the design of dams, large bridge, and flood mitigation works such as levees, floodways and other flood control structures, and are also used in flood forecasting, and the necessary hydrologie records are not available. In such cases, if time and funds permit, it may be desirable to install the necessary raingauges, pruviometers, and stream gaging stations, and collect the necessary data over a period of years. On the otherhand, this procedure may be found either uneconomic or impossible on the grounds of time required, and it then becomes necessary to synthesise a unitgraph from a knowledge of the physical charcteristics of the catchment. In the preparing the approach to the solution of the problem we must select a number of catchment characteristic(shape, stream pattern, surface slope, and stream slope, etc.), a number of parameters that will define the magnitude and shape of the unit graph (e.g. peak discharge, time to peak, and base length, etc.), evaluate the catch-ment characteristics and unitgraph parameters selected, for a number of catchments having adequate rainfall and stream data and obtain Correlations between the two classes of data, and assume the relationships derived in just above question apply to other, ungaged, Catchments in the same region and, knowing the physical characteritics of these catchments, substitute for them in the relation\ulcorner ships to determine the corresponding unitgraph parameters. This method described in this note, based on the routing of a time area diagram through channel storage, appears to provide a logical line of research and they allow a readier correlation of unitgraph parameters with catchment characteristics. The main disadvantage of this method appears to be the error in routing all elements of rainfall excess through the same amount of storage. evertheless, it should be noted that the synthetic unitgraph method is more accurate than the rational method since it takes account of the shape and tophography of the catchment, channel storage, and temporal variation of rainfall excess, all of which are neglected in rational method.

  • PDF

A Study on the Survey Methodology in Riverbed Private Use using Integration Drone Photogrammetry and Cadastral Information (드론 사진측량과 지적정보를 융합한 하천부지 점용 조사방법)

  • Oh, Yi Kyun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.135-144
    • /
    • 2017
  • The riverbed areas have exposed to various natural disasters and the private use by neighboring residents have caused many problems. The research objectives are to survey the actual situation of riverbed areas in order to prevent landscape damage and private use. Drone and photogrammetry, orthophoto, DSM(Digital Surface Model), digital topographic map and cadastral information have been integrated by GIS technology. The flood and disaster vulnerable area has been surveyed and the land use and private use has been analyzed using cadastral information. The research results show that the analyzed data can be used for providing foundation data for management of river and also can be used for surveying actual situation of private use on the riverbed areas.

A Study on Design of Metadata for Global Earth Observation Data (지구관측자료 메타데이터 설계에 관한 연구)

  • Ahn, Bu-Young;Han, Jeong-Min;Kwon, Oh-Kyoung;Joh, Min-Su
    • Journal of Information Management
    • /
    • v.39 no.2
    • /
    • pp.211-234
    • /
    • 2008
  • Recently, the frequency and scale of natural disasters such as typhoons, flood, earthquakes, and tidal waves from earthquakes has been increasing. Several nations have recognized that earth observation is essential for protecting the Earth's environment. However, as the data format from earth observation varies depending on areas, institutes, and countries, sharing and exchange between data is difficult. Thus, we have a metadata standardization scheme suitable for the domestic situation to allow exchange of data between societal benefit areas with reference to principles of data sharing and exchange that are discussed on GEO (Group on Earth Observation). We have also designed metadata schemes required to identify the metadata situation of earth observation data being used for 9 societal benefit areas of GEOSS(Global Earth Observation System of Systems).

Multi-temporal Analysis of Deforestation in Pyeongyang and Hyesan, North Korea

  • Lee, Sunmin;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Since forest is an important part of ecological system, the deforestation is one of global substantive issues. It is generally accepted that the climate change is related to the deforestation. The issue is worse in developing countries because the forest is one of important natural resources. In the case of North Korea, the deforestation is on the rise from forest reclamation for firewood collection and food production. Moreover, a secondary effect from flood intensifies the damage. Also, the political situation in North Korea presents difficulty to have in-situ measurements. It means that the accurate information of North Korea is nearly impossible to obtain. Thus, assessing the current situation of the forest in North Korea by indirect method is required. The objective of this study is to monitor the forest status of North Korea using multitemporal Landsat images, from 1980s to 2010s. Since the deforestation in North Korea is caused by local residents, we selected two study areas of high population density: Pyeongyang and Hyesan. In North Korea, most of clean Landsat images are acquired in fall season. The fall images have an advantage that we can easily distinguish agriculture areas from forest areas, also have an disadvantage that the forests cannot be easily identified because some of trees have turned red. To identify the forests exactly, we proposed a modified Normalized Difference Vegetation Index (mNDVI) value. The deforestation in Pyeongyang and Hyesan was analyzed by using mNDVI. The dimension of forest has decreased approximately 36% in Pyeongyang for 27 years and approximately 25% in Hyesan for 16 years. The results show that the forest areas in Pyeongyang and Hyesan have been steadily reduced.

The Integration of Smart Disaster Site Support System and Prototype Simulation for Effective Disaster Response (효율적 재난대응을 위한 스마트 재난현장지원시스템 통합방안 및 프로토타입 시뮬레이션)

  • Park, Hyunchul;Park, Seona;Lee, Jinsoo;Pyeon, Muwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.831-839
    • /
    • 2023
  • The purpose of this study is to quickly collect and analyze information generated in real-time at disaster sites to propose an integrated plan for an on-site support system that can support accurate disaster site situation identification and decision-making, and to review field applicability through prototype simulation. Accordingly, information collection, sharing, and convergence technologies that can be used at disaster sites were reviewed, and a plan for integrating a smart disaster site support system that can create an efficient flow of information resources and information necessary for the entire stage of disaster management was presented. In order to examine the possibility of operating the system with a prototype manufactured based on the integration plan, simulations were conducted based on the storm and flood disaster scenario, and it was confirmed that various functions in the system were implemented normally and displayed on the GIS situation board. Through this study, it is expected that efficient and active disaster response will be possible in a rapidly changing disaster environment.

Degradation of Planted Forest and Flood Management in Urban Area (인공림의 황폐실태와 도시지역 홍수 위험성 증대에 대하여)

  • Tsuchiya, Nobuyuki
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2009.10a
    • /
    • pp.1-16
    • /
    • 2009
  • Japan is one of the major forest-rich countries in the world with two thirds of its national territory covered with forests. The various functions of forests, including the prevention of global warming, conservation of national land, recharging of water resources, and maintenance of biotic diversity, play an important role in our safe, secure, and comfortable living. With the increasing national expectations on the role of forests to contribute to the prevention of global warming and "Accelerating forest carbon-sink measures to achieve Kyoto Protocol Commitment", it is necessary to make efforts toward a large-scale forest regeneration in order to secure an absorption of 13 million carbon tons through forest carbon sink for the achievement of the target of six percent reduction under the Kyoto Protocol. Most importantly, however, is to accelerate the measures for forests as absorption sources, including thinning and other forestry management activities. However, there is a situation, among others, where thinning is not implemented properly due to the decreased willingness of forest owners to manage forests, because of the long-term low demand for domestic lumber and lumber prices. In addition, forestry workers are aging and decreasing in number. Thus, the circumstances surrounding forestry are severe. It is necessary for the protection of our precious forests to make efforts to create and maintain forests with activities that involve citizens such as the "National Movement for Utsukushii Mori Zukuri(Fostering Beautiful Forests)".

  • PDF

Emergency-response organization utilization of social media during a disaster: A case study of the 2013 Seoul floods

  • Kim, Ji Won;Kim, Yonghee;Suran, Melissa
    • Journal of Contemporary Eastern Asia
    • /
    • v.14 no.2
    • /
    • pp.5-15
    • /
    • 2015
  • A growing number of studies have examined the relevance and impact of social media in building organizational resilience, which the ability to recover from a crisis, in the field of emergency management. However, few studies have assessed how these emergency response organizations perceive their own use of social media in crisis situations. In attempting to fill this gap, this study conducted a structured survey with emergency-response organization representatives in Seoul, South Korea, to examine how such organizations evaluate their utilization of social media in an urban emergency situation and how their social media uses are related to promoting organizational resilience during adverse events such as a flood. Overall, the findings imply that organizations are not yet taking full advantage of social media. Respondent evaluations of their own social media use in all three assessment areas-information provision, information dissemination, and emotional messages-were not satisfactory. However, their perceptions of how well they utilize social media were positively related to how they view their organizational resilience. Therefore, it may be that these organizations realize the powerful role of social media in building organizational resilience but lack the knowledge and experience to make the best use of social media services.

Development of Rivers Management system to Decrease flood Disaster using GIS (GIS 기반의 홍수 피해 감소를 위한 하천관리 시스템 개발)

  • Jeong, In-Ju;Park, Sang-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.35-40
    • /
    • 2003
  • In these days, damages from localized heavy rain or typhoon are increase and people are making constant effort to work out countermeasures. Especially, by apply GIS with prompt extraction of information and objective analysis, we could demonstrate more effectively. For that reason, in this research we make the connection between rainfall-runoff model and HEC-RAS which calculate automatically and inquire out the dangerous zone easier way by describing the result with the connection between the Map Object and MFC. Most of all, this research will be very useful to forecast and prepare the disaster because it could plot plane figures, longitudinal sections and cross sections at the same time to help understand the damaged situation.

  • PDF

A Study on Empirical Method Analysis of Impervious Surface Using KOMPSAT-2 Image (KOMPSAT-2 위성영상을 이용한 불투수지도작성 방법에 관한 실증연구)

  • Bae, Da-Hye;Lee, Jae-Yil;Ko, Chang-Hwan;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2011
  • Impervious surface affects urban climate, flood, and water pollution and has important role as basic data for urban planning and environmental and resources management uses. With a high paved rate, increased quantity of the outflown water and brings urban flooding during a heavy rain. Moreover, these non-point source pollution is getting increased the water pollution. In this regard, it is definitely important to research and keep monitoring the current situation of paved surface, which influences urban ecosystem, disaster and pollution. In this study, we suggest a method to utilize high resolution satellite image data for efficient survey on the current condition of paved surface. We analysed the paved surface condition of Dae-jeon metropolitan city area using KOMPSAT-2 image and validate its practicalness and limitation of this method.