• Title/Summary/Keyword: Flood Safety

Search Result 334, Processing Time 0.028 seconds

The Pan-Korea Grand Waterway in view of Disaster prevention, flood decrease and water resource insurance (방재와 홍수저감 및 수자원 확보 측면에서 바라본 한반도 대운하)

  • Sin, Eun-U
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • At this point, the Pan-Korea Grand Waterway (PKGW) has negative views and various complicated problems, but the government chose PKGW as important project for having a benefit in physical distribution, tourism, aggregate sale and new employment as well as in view of disaster prevention, flood control, irrigation. The government makes special laws for PKGW in evaluating environment effect and the safety of existing facilities and considers countermeasures for the rehabilitation, movement and redevelopment of facilities by related company and specialist. From analyzing and investigating the collective results in detail and in stages, the PKGW is the best choice by which korea engineers can hand over pleasant and beautiful korea to next generation in world.

  • PDF

Risk Model for the Safety Evaluation of Dam and Levee: II. Application (댐 및 하천제방에 대한 위험도 해석기법의 개발 : II. 적용 예)

  • Han, Geon-Yeon;Lee, Jong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 1997
  • The risk assessment model for dam and levee is applied to a river where two adjacent dams are located in the upstream of the watershed. "A" dam is proven to be safe with 200-year precipitation and unsafe with PMP condition, whereas "B" dam to be safe with 200-year precipitation and PMP condition. The computed risk considering the uncertainties of the runoff coefficient. initial water depth and relevant data of the dam and spillway turn out to be equivalent results in Monte-Carlo and AFOSM method. In levee risk model, this study addresses the uncertainty of water surface elevation by Manning's equation. Monte-Carlo simulation with the variations of Manning's roughness coefficient is calculated by assuming that it follows atriangular distribution. The model can be used for preparing flood risk maps, flood warning systems, and establishing nation's flood disaster protection plan.

  • PDF

Numerical Analysis of Hydrograph Determination for Cohesive Soil Levee (조립토 하천제방의 수위파형결정에 관한 수치해석적 연구)

  • Kim, Jin-Man;Kim, Ji-Sung;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.81-92
    • /
    • 2014
  • The integrity evaluation of river levee includes slope stability evaluation of riverside land and protected low-land, and safety of piping with respect to critical gradient and critical velocity based on related regulations, such as Design Criteria Rivers Commentary (2009), Structural Design Criteria Based Commentary (2009). The design hydro-graph is the most important design input factor for the integrity evaluation; it can be inaccurate due to the absence of its decision methods suggested by the national level. The authors in this paper evaluated numerical analytic levee integrity for piping and slope stability by changing each design hydro-graph, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency for Mun-san-jae on Nak-dong River. Finally, the authors suggested that the levee integrity of piping and slope stability are very sensitive to the changes of increasing time of ordinary water level by 57 hours and lasting time of the flood water level by 53 hours, respectively, for Mun-san-jae.

Analysis of Runoff Reduction Characteristics According to Alloted Detention System in Urban Area (도시유역의 분담저류 방식에 따른 유출저감특성 분석)

  • Kim, Ji -Tae;Kwon, Wook;Kim, Young-Bok;Kim, Soo-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.915-922
    • /
    • 2006
  • National Emergency Management Agency is planning a flood disaster mitigation system in urban area. This research is about analysis of runoff reduction efficiency of the alloted detention system which is one of flood disaster mitigation systems in urban area. The alloted detention system is composed of small to middle size detention facilities located in up and middle stream of urban basin. To analyze runoff reduction efficiency of alloted detention system, basic runoff analysis in test area has been carried out and runoff characteristics with size and locations of detention facilities has been simulated. The results of simulation are showing that alloted detention system can reduce the discharge of main stream and detention facilities' size and locations are major parameters of runoff reduction efficiency. It is concluded that alloted detention system can be a useful method in urban area's flood disaster mitigation and can secure safety against flood damages in urban areas.

Analysis of change characteristics through estimating the limit rainfall by period (기간별 한계강우량 산정을 통한 변화 특성 분석)

  • Hwang, Jeong Geun;Cho, Jae Woong;Kang, Ho Seon;Lee, Han Seung;Moon, Hye Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.99-99
    • /
    • 2020
  • The frequency and scale of domestic flood damage continues to increase, but the criteria for responding to flood damage have not been established. To this end, research is underway to estimate the amount of rainfall in each region so that it can be used to respond to flood damage. The limit rainfall is defined as the cumulative maximum rainfall for each duration that causes flooding, and this research purpose to improve the threshold rainfall by estimating the damage based on the damage history in units of 5 years and analyzing changes over time. The limit rainfall based on the damage history was estimated by using the NDMS past damage history of the Ministry of the Interior and Safety and the rainfall minutes data of AWS and ASOS. The period for estimating the limit rainfall is 2013 ~ 2017, 2015 ~ 2019, and the limit rainfall is estimated by analyzing the relationship between the flood damage history and the rainfall event in each period. Considering changes in watershed characteristics and disaster prevention performance, the data were compared using 5-year data. As a result of the analysis, the limit rainfall based on the damage history could be estimated for less than about 10.0% of the administrative dongs nationwide. As a result of comparing the limit rainfall by period, it was confirmed that the area where the limit rainfall has increased or decreased This was analyzed as a change due to rainfall events or urbanization, and it is judged that it will be possible to improve the risk criteria of flooding.

  • PDF

Analyzing on the cause of downstream submergence damages in rural areas with dam discharge using dam management data

  • Sung-Wook Yun;Chan Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.331-347
    • /
    • 2023
  • The downstream submergence damages caused during the flood season in 2020, around the Yongdam-dam and five other sites, were analyzed using related dam management data. Hourly- and daily-data were collected from public national websites and to conduct various analyses, such as autocorrelation, partial-correlation, stationary test, trend test, Granger causality, Rescaled analysis, and principal statistical analysis, to find the cause of the catastrophic damages in 2020. The damage surrounding the Yongdam-dam in 2020 was confirmed to be caused by mis-management of the flood season water level. A similar pattern was found downstream of the Namgang- and Hapcheon-dams, however the damage caused via discharges from these dams in same year is uncertain. Conversely, a different pattern from that of the Yongdam-dam was seen in the areas downstream of Sumjingang- and Daecheongdams, in which the management of the flood season water level appeared appropriate and hence, the damages is assumed to have occurred via the increase in the absolute discharge amount from the dams and flood control capacity leakage of the downstream river. Because of the non-stationarity of the management data, we adapted the wavelet transform analysis to observe the behaviors of the dam management data in detail. Based on the results, an increasing trend in the discharge amount was observed from the dams after the year 2000, which may serve as a warning about similar trends in the future. Therefore, additional and continuous research on downstream safety against dam discharges is necessary.

Development and Application of Hydrological Safety Evaluation Guidelines for Agricultural Reservoir with AHP (AHP를 이용한 농업용저수지 수문학적 안전성평가 방법 개발 및 적용)

  • Lee, Jae Ju;Park, Jong Seok;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.235-243
    • /
    • 2014
  • According to the "Safety Evaluation Detailed Instructions (Dam)", precise safety inspection is carried out for dams that exceed a certain scale. However, as the Hydrological Safety Evaluation from various evaluation standards is designed to evaluate the safety of existing dams considering PMF, the evaluation is much less applicable for most agricultural reservoirs. Therefore, the Hydrological Safety Guidelines for agricultural reservoirs are expected to be re-evaluated considering the diverse risk factors with the coefficient model and AHP in this study. The coefficient model has been developed by selecting the hydrological safety superordinate subordinate evaluation factors to reflect diverse risk factors of agricultural reservoirs. After calculating the sum of indicators score for each evaluation factors, validation procedures were performed for the questionnaire which a panel answered. The practical coefficient has eventually been estimated for the hydrological safety evaluation considering the diverse risk factors. The conclusions acquired based on the study done are that both most agricultural reservoirs were classified as flood defense capability is insufficient and agricultural reservoirs which meet embankment-freeboard standards considering PMF was overestimated.

Analysis of Flood Control Effect by Applying the Connecting Channel in Estuary Area Including the Confluence of Two Rivers (2개의 하천이 합류하는 하구역에서의 연결수로 통수능에 따른 홍수위저감효과 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1065-1075
    • /
    • 2015
  • In the estuary where the structure such as river-mouth weir has been installed, the flow is developed very complicatedly due to river water from upstream, tide of the sea and floodgate operation. Especially, if basin outlets more than one exists in one estuary, the boundary conditions will be significantly more complex form. Saemangeum(SMG) project area in Korea is the most typical example. There are Mankyung river and Dongjin river in upstream. The water of them inflows into SMG project area. In the downstream, river flow was drained from inland to sea over the SMG sea dike through the sluice. The connecting channel was located between Mankyung and Dongjin basins. It functions not only as transportation by ship in ordinary period but also as flood sharing by sending flood flow to each other in flood period. Therefore, in order to secure the safety against flood, it is very important to understand the flood sharing capacity for connecting channel. In this study, the flood control effect was analyzed using numerical simulation. Delft3D was used to numerical simulation and simulated period was set up with neap tide, in which the maximum flood stage occurred due to poor drainage. Actually, three connecting channels were designed in land use plan of the SMG Master Plan, but they were simplified to a single channel for conciseness of analysis in this study. According to the results of numerical analysis, the water level difference between two basins was increased and the maximum flood stage at dike sluice was also upraised depending on decrease of conveyance. And the velocity induced by same water level difference was decreased when the conveyance became smaller. In certain conveyance above, there was almost no flood control effect. Therefore, if the results of this study are considered for design of connecting channel, it will be expected to draw the optimal conveyance for minimizing dredging construction cost while maximizing the flood control effect.

Optimization for Roughness Coefficient of River in Korea - Review of Application and Han River Project Water Elevation - (실측 자료를 이용한 국내하천의 조도계수 산정 -적용성 및 한강의 계획홍수위 검토-)

  • Kim, Jooyoung;Lee, Jong-Kyu;Ahn, Jong-Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.571-578
    • /
    • 2010
  • Manning's roughness coefficients were reevaluated for the computation of river flow of the Han River, the Nakdong River and the Geum River. The roughness coefficients were estimated by two methods. One is based on the assumption that roughness is primarily a function of grain diameter and the other is based on the findings that roughness may vary significantly with the flow discharge. The roughness coefficients adopted in each river improvement master plan have been compared with those obtained using the FLDWAV in this study, and their applicabilities have been reviewed, using the FLDWAV and HEC-RAS models. The design flood water levels computed by the abovementioned models with the roughness coefficients proposed in this study have shown good agreement with the measurements of time variation. The roughness coefficients computed using the FLDWAV model showed nearly no close correlation with the various hydraulic characteristic factors, such as grain size and river depth, etc.. Finally the design flood water levels and levee safety about the downstream part from the Paldang Dam of the Han River has been reviewed using HEC-2 model with roughness coefficients of this study and the results indicated that some parts of the existing levees were short of safety.

Estimating the compound risk integrated hydrological / hydraulic / geotechnical uncertainty of levee systems (수문·수리학적 / 지반공학적 불확실성을 고려한 제방의 복합위험도 산정)

  • Nam, Myeong Jun;Lee, Jae Young;Lee, Cheol Woo;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.277-288
    • /
    • 2017
  • A probabilistic risk analysis of levee system estimates the overall level of flood risk associated with the levee system, according to a series of possible flood scenarios. It requires the uncertainty analysis of all the risk components, including hydrological, hydraulic and geotechnical parts computed by employing MCMC (Markov Chain Monte Carlo), MCS (Monte Carlo Simulation) and FOSM (First-Order Second Moment), presents a joint probability combined each probability. The methodology was applied to a 12.5 km reach from upstream to downstream of the Gangjeong-Goryeong weir, including 6 levee reaches, in Nakdong river. Overtopping risks were estimated by computing flood stage corresponding to 100/200 year high quantile (97.5%) design flood causing levee overflow. Geotechnical risks were evaluated by considering seepage, slope stability, and rapid drawdown along the levee reach without overflow. A probability-based compound risk will contribute to rising effect of safety and economic aspects for levee design, then expect to use the index for riverside structure design in the future.