• Title/Summary/Keyword: Flood Hydrograph

Search Result 212, Processing Time 0.03 seconds

Analysis of Flood Flow Characteristics of the Han River using 1-Dimensional St. Venant Equations (1차원 St. Venant 방정식을 이용한 한강 하류부 하도의 홍수류 특성 분석)

  • Kim, Won;Woo, Hyo-Seop;Kim, Yang-Su
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.163-179
    • /
    • 1996
  • Flood flow characteristics of the Han River (from Goan to Indo Bridge) are analyzed using 1-dimensional St. Venant equations. NETWORK, a finite difference model, is used to calculate each term (local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) of the momentum equation and to analyze the flow characteristics. By the result of the study, as the general characteristics of flow in a channel that acceleration terms are very small and the other three terms are much greater is presented, three terms(pressure force term, gravity force term, friction force term) are to be main terms which decide the characteristics of flow. Specially in this region the acceleration term is noted so large that it cannot be ignored according to the shape of hydrograph and the region.

  • PDF

Suggestion of modification method of unit hydrograph for estimating probable maximum flood (가능최대홍수량 산정을 위한 단위도의 수정 방법 제안)

  • Lee, Jinwook;Kim, Soeun;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.309-309
    • /
    • 2021
  • 댐 설계 시 가능최대강수량(probable maximum precipitation, PMP)으로 인한 홍수량인 가능최대홍수량(probable maximum flood, PMF)이 고려되며, 이를 산정하기 위해서는 단위도가 필요하다. 즉, PMF는 PMP를 입력으로 하여 단위도를 이용한 강우-유출 해석을 통해 얻어진다. 따라서, 동일한 PMP가 고려되더라도 적용되는 단위도에 따라 산정되는 PMF는 달라진다. PMP가 발생하는 상황에서는 평균적인 상황에 비해 단위도의 반응이 보다 빠르고 강해진다(한국개발연구원, 2007; 한국수자원공사, 2008; Kjedsen et al., 2016). 국내의 경우, 아직까지 PMF 산정을 위한 단위도에 대한 명확한 지침은 존재하지 않는다. 댐설계기준해설(국토해양부, 2011)에서는 유역의 평균단위도로 PMF를 추정할 경우 실제보다 낮은 결과치가 도출되는 문제가 있을 수 있다는 점을 경고하는 수준에 그치고 있다. 이에 본 연구에서는 유속 정보를 기반으로 PMF 산정을 위한 단위도를 결정해 보고, 이를 통해 대표단위도로부터 PMF 산정을 위한 단위도를 결정하기 위한 수정 방법을 제안하였다. 추가적으로 이러한 수정단위도를 적용하여, 기존 국내 기준 적용 결과 및 확률 강우량을 통해 산정되는 빈도홍수량과의 비교를 수행하였다.

  • PDF

Development of Runoff Hydrograph Model for the Derivation of Optimal Design Flood of Agricultural Hydraulic Structures(II) (농업수리구조물의 적정설계홍수량 유도를 위한 유출수문곡선 모형의 개발(II))

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.112-126
    • /
    • 1996
  • This study was conducted to develop an optimal runoff bydrograph model by comparison of the peak discharge and time to peak between observed and simulated flows derived by four different models, that is, linear time-invariant, linear time-variant, nonlinear time-invariant and nonlinear time-variant models under the conditions of heavy rainfalls with regionally uniform rainfall intensity in short durations at nine small watersheds. The results obtained through this study can be summarized as follows. 1. Parameters for four models including linear time-invariant, linear time-variant, nonlinear time-invariant and nonlinear time-variant models were calibrated using a trial and error method with rainfall and runoff data for the applied watersheds. Regression analysis among parameters, rainfall and watershed characteristics were established for both linear time-invariant and nonlinear time-invariant models. 2. Correlation coefficients of the simulated peak discharge of calibrated runoff hydrographs by using four models were shown to be a high significant to the peak of observed runoff graphs. Especially, it can be concluded that the simulated peak discharge of a linear time-variant model is approaching more closely to the observed runoff hydrograph in comparison with those of three models in the applied watersheds. 3. Correlation coefficients of the simulated time to peak of calibrated runoff hydrographs by using a linear time-variant model were shown to be a high significant to the time to peak of observed runoff hydrographs than those of the other models. 4. The peak discharge and time to peak of simulated runoff hydrogaphs by using linear time-variant model are verified to be approached more closely to those of observed runoff hydrographs than those of three models in the applied watersheds. 5. It can be generally concluded that the shape of simulated hydrograph based on a linear time-variant model is getting closer to the observed runoff hydrograph than those of three models in the applied watersheds. 6. Simulated hydrographs using the nonlinear time-variant model which is based on more closely to the theoritical background of the natural runoff process are not closer to the observed runoff hydrographs in comparison with those of three models in the applied watersheds. Consequently, it is to be desired that futher study for the nonlinear time-variant model should be continued with verification using rainfall-runoff data of the other watersheds in addition to the review of analyical techniques.

  • PDF

A Methodology for the Estimation of Design Flood of a Small Watershed (소하천유역(小河川流域)의 계획홍수량(計劃洪水量) 산정방법(算定方法)의 개발(開發))

  • Yoon, Yong Nam;Ahn, Tae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.103-112
    • /
    • 1984
  • This study is an effort to develop a series of empirical procedure for the determination of design flood for a small watershed based on the unit hydrograph theory. It is shown that a flood discharge of a watershed with a specific return period can be expressed as a product of its watershed area, rainfall factor, runoff factor and flood peak reduction factor. Since the procedures for the determination of rainfall factor and runoff factor were already developed in the previous study (13) a series of step-by-step procedure is devised to empirically determine the flood peak reduction factor in the present study. Using the methodology developed herein the 50-year design flood, which is of concern in the drainage of agricultural lands, is estimated for a watershed on upper Kyungan River and compared with the design floods by the existing methods now in use. The flood peak reduction factor was correlated with the dimensionless parameter consisted of the rainfall duration divided by the basin lag time, which was computed from the derived unit hydrographs by the method of moment. The unit hydrographs of various durations were synthesized by the method of build up and S-curve. A multiple correlation was also made between the basin lag time and the physiographic parameters of the watershed, i.e., the stream length and the average stream slope.

  • PDF

Runoff Analysis Using the Discrete, Linear, Input-Output Model (선형 이산화 입력-출력 모형에 의한 유출해석)

  • Kwak, Ki Seok;Kang, In Shik;Jeong, Yeon Tae;Kang, Ju Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.859-866
    • /
    • 1994
  • It is difficult to make an exact estimate of the peak discharge or the runoff depth of flood and establish the proper measure for the flood protection since the water stage or discharge has been nearly measured at most medium or small river basins. The objective of this study is to estimate parameters of the discrete, linear, input-output model for medium or small river basin. The On-Cheon River basin in Pusan was selected for the study area. The runoff data used in the study has been observed since June 1993, and the effective rainfall was determined using the storage function method. The parameter sets of the discrete, linear, input-output model were estimated using the least squares method and the correlation function method, respectively. The calculated hydrographs by the discrete, linear, input-output model regenerated the observed outflow hydrographs well, and also the simulated flood hydrograph was comparable to the observed one. Therefore, it is believed that the discrete, linear, input-output model is simpler than other runoff analysis methods, and can be applied to a medium or small river basin.

  • PDF

Modeling Rainfall - Runoff Simulation System of JinWie Watershed using GIS based HEC-HMS Model (GIS 기반의 HEC - HMS를 이용한 진위천 유역의 강우-유출모형 구성)

  • Kim, Sang-Ho;Park, Min-Ji;Kang, Soo-Man;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • The purpose of this study is to prepare input data for FIA (flood inundation analysis) and FDA (flood damage assessment) through rainfall-runoff simulation by HEC-HMS model. For Jinwie watershed ($737.7km^2$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. The results will be used for river routing and inundation propagation analysis for various flood scenarios.

  • PDF

Study on Flood Prediction System Based on Radar Rainfall Data (레이더 강우자료에 의한 홍수 예보 시스템 연구)

  • Kim, Won-Il;Oh, Kyoung-Doo;Ahn, Won-Sik;Jun, Byong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1153-1162
    • /
    • 2008
  • The use of radar rainfall for hydrological appraisal has been a challenge due to the limitations in raw data generation followed by the complex analysis needed to come up with precise data interpretation. In this study, RAIDOM (RAdar Image DigitalizatiOn Method) has been developed to convert synthetic radar CAPPI(Constant Altitude Plan Position Indicator) image data from Korea Meteorological Administration into digital format in order to come up with a more practical and useful radar image data. RAIDOM was used to examine a severe local rainstorm that occurred in July 2006 as well as two other separate events that caused heavy floods on both upper and mid parts of the HanRiver basin. A distributed model was developed based on the available radar rainfall data. The Flood Hydrograph simulation has been found consistent with actual values. The results show the potentials of RAIDOM and the distributed model as tools for flood prediction. Furthermore, these findings are expected to extend the usefulness of radar rainfall data in hydrological appraisal.

PMP Estimation and Its Application for the Design Flood Determination in River Basin (하천유역의 설계 홍수량 결정을 위한 P.M.P의 산정 및 적용)

  • 이순택;박정규
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1986.07a
    • /
    • pp.93-101
    • /
    • 1986
  • This study aims at analysis and application of PMP(Probable Maximum Precipitation) for the determination of design of major hydraulic structures. PMP was estimated by hydro-meteorolgical method and envelope curve method. PMF(Probable Maximum Flood) was then estimated from this PMP by synthetic unit hydrograph method and chow method. From the comparison of three methods for PMP estimation of magnitude of PMP in order of statistical, hydro-meteorlogical, envelope curve method. Amon PMP results estimated by each method it is believed that the hydro-meteorological method gave the best proper value in comparison with historical maximum rainfall because of this method reflected upon all meteorological factor. From the comparison of PMP with probable rainfall and flood, it was shown that estimated value by statistical method and hydro-metelogical method were nearly equivalent to the value of return period 200 to 500 year. It was found that PMF estimated from would be more safe for the design of major hydraulic structures in the consinderation.

  • PDF

Effects of Calculation Method of Surface Runoff on the Estimation of Flood in Urban Drainage Basin (지표면유출 해석방법이 도시 유역의 홍수량 산정에 미치는 영향)

  • Lee, Jong Tae;Yoon, Sei Eui;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 1994
  • The effects of the calculation method of surface runoff on the estimation of flood in urban drainage basin were analyzed in this study. In comparing with surface runoff methods. RUNOFF, ILLUDAS, SBUH and RRL were investigated. To route the flow in sewer/conduits EXTRAN was applied. The Kings Creek and Gray Haven drainage basin's measured data of rainfall and runoff were used in comparing the computed results. The results show that the greatest effect factor on surface runoff in urban small area is the concentration time. The results estimated by each model which are composed with EXTRAN show that the scheme for surface runoff gives considerable effect on the flood hydrograph in urban drainage system. RUN-EX method gives the most similar simulation results among the surface runoff models, and is more applicable for paved and unpaved basins than others.

  • PDF

Hydraulic Flood Routing using Linear Reservoir Model (선형저수지모형을 적용한 수리학적 홍수추적)

  • Jeon, Min-Woo;Cho, Young-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.787-796
    • /
    • 2002
  • Hydraulic flood routing was performed for unsteady flow in a natural river using Preissmann scheme. A Log-Pearson Type-Ⅲ hydrograph is chosen arbitrarily as the upstream boundary condition and lateral inflow hydrographs for sensitivity analysis. For the application with an actual river system, upstream and lateral inflow hydrographs were estimated by the linear reservoir model and the Manning's equation was used as the downstream boundary condition. The unsteady flow model using the linear reservoir model as the inflow hydrographs was applied to Bochung stream basin and gives good results, and is approved to be used for the runoff prediction. As results of the sensitivity analysis, the proposed model may help to estimate the roughness coefficients when using the unsteady flow model with lateral inflow combined with the linear reservoir model.