• Title/Summary/Keyword: Flocks' collision

Search Result 2, Processing Time 0.017 seconds

Crossing Dynamics of Leader-guided Two Flocks (우두머리가 있는 두 생물무리의 가로지르기 동역학)

  • Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2010
  • In field, one can observe without difficulties that two flocks are intersected or combined with each other. For example, a fish flock in a stream separates into two part by obstacles (e.g. stone) and rejoins behind the obstacles. The dynamics of two flocks guided by their leader were studied in the situation where the flocks cross each other with a crossing angle, ${\theta}$, between their moving directions. Each leader is unaffected by its flock members whereas each member is influenced by its leader and other members. To understand the dynamics, I investigated the order parameter, ${\phi}$, defined by the absolute value of the average unit velocity of the flocks' members. When the two flocks were encountered, the first peak in ${\phi}$ was appeared due to the breaking of the flocks' momentum balance. When the flocks began to separate, the second peak in ${\phi}$ was observed. Subsequently, erratic peaks were emerged by some individuals that were delayed to rejoin their flock. The amplitude of the two peaks, $d_1$ (first) and $d_2$ (second), were measured. Interestingly, they exhibited a synchronized behavior for different ${\theta}$. This simulation model can be a useful tool to explore animal behavior and to develop multi-agent robot systems.

Real-time Flocking Simulation through RBF-based Vector Field (방사기저함수(RBF) 기반 벡터 필드를 이용한 실시간 군집 시뮬레이션)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2937-2943
    • /
    • 2013
  • This paper introduces a real-time flocking simulation framework through radial basis function(RBF). The proposed framework first divides the entire environment into a grid structure and then assign a vector per each cell. These vectors are automatically calculated by using RBF function, which is parameterized from user-input control lines. Once the construction of vector field is done, then, flocks determine their path by following the vector field flow. The collision with static obstacles are modeled as a repulsive vector field, which is ultimately over-layed on the existing vector field and the inter-individual collision is also handled through fast lattice-bin method.