We study the collective behaviors of two second-order nonlinear consensus models with a bonding force, namely the Kuramoto model and the Cucker-Smale model with inter-particle bonding force. The proposed models contain feedback control terms which induce collision avoidance and emergent consensus dynamics in a suitable framework. Through the cooperative interplays between feedback controls, initial state configuration tends to an ordered configuration asymptotically under suitable frameworks which are formulated in terms of system parameters and initial configurations. For a two-particle system on the real line, we show that the relative state tends to the preassigned value asymptotically, and we also provide several numerical examples to analyze the possible nonlinear dynamics of the proposed models, and compare them with analytical results.
In this paper, an acceleration based passenger evacuation simulation is performed. In order to describe a passenger‘s behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. The destination force, the contact force, and the group force are considered as external forces and the moments due to each force are also considered. With the passenger model proposed in this paper, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of passenger rotation on the evacuation time are confirmed.
다중개체를 제어하기 위해서 해결해야 되는 문제들 중 하나는 위치제어다. 위치와 속도를 제어하기 위한 모델로 augmented Cucker-Smale 모델이 존재했다. 하지만 기존 모델은 모든 개체에 동일한 시스템을 적용함에 따라서 개별개체의 특성을 살리지 못했다는 특징이 있다. 본 논문에서는 그 점을 보안하고 적절한 형태로 변형하기 위해서 초기 위치와 분포를 이용한 마할라노비스 거리를 계수와 통계학적 자유도를 적용해서, 모델의 수렴시간과 소모에너지를 동시에 줄이고자 한다. 모델의 성능 검증을 위해서 몬테카를로 시뮬레이션을 통해서 전체적인 경향성을 판단했고, 추가적으로 개별 개체의 움직임을 분석하여서 마할라노비스 거리 계수가 적절한 역할을 수행하고 있는지 확인했다.
A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.
The objective of this paper is, based upon the principles of artificial life, to induce emergent behaviors of multiple autonomous mobile robots which complex global intelligence form from simple local interactions. Here, we propose an architecture of neural network learning with reinforcement signals which perceives the neighborhood information and decides the direction and the velocity of movement as mobile robots navigate in a group. As the results of the simulations, the optimum weight is obtained in real time, which not only prevent the collisions between agents and obstacles in the dynamic environment, but also have the mobile robots move and keep in various patterns.
본 논문에서는 비대칭적이고 불균질적인 트래픽이 혼재하는 멀티미디어 서비스 환경에서 시분할 듀플렉싱을 사용하는 시분할-코드분할 다중 접속(TD-CDMA) 시스템의 직교 코드와 시간의 2차원적인 자원을 효율적으로 운용하는 방법을 수학적 모델링을 통해서 알아본다. 호-계층에서는 상/하향 트래픽 부하를 2차원 벡터로 나타내어 대기 이론을 기반으로 하여 호손율을 구하며, 최소의 호손율을 보이는 최적의 스윗칭-포인트를 찾는다. 패킷-계층에서는 서킷호와 패킷호로 구분하여 대기 중인 패킷과 서비스 중인 서킷호를 2차원의 상태로 나타내어 패킷 손실율을 구한다. 또한 일정 수준 이상의 서비스 품질을 위해 요구되는 버퍼 크기를 알아본다.
본 논문에서는 다수 고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계를 다룬다. 군집비행을 통한 임무 수행을 위해서 각 무인기들은 집결, 선회, 경로점, 개별 비행 등의 기동이 필요하다. 이를 위해서는 경로 추종, 떼비행, 충돌 회피가 요구된다. 본 논문에서는 상기 기동들을 수행하기 위해 벡터필드(경로 추종), 증강 쿠커-스메일 모델(떼비행), 포텐셜 필드(충돌 회피) 기법들을 활용한 통합 유도 알고리듬을 제안한다. 통합 유도 명령 생성을 위해 각 기법에서 생성된 유도 명령을 가중치에 따라 혼합할 수 있게 설계하며, 19대의 소형 고정익 무인기를 이용한 비행시험을 통해 제안한 군집 유도 알고리듬의 성능을 확인하였다.
This paper introduces collective navigation through a narrow gap using a curriculum-based deep reinforcement learning algorithm for a swarm of unmanned aerial vehicles (UAVs). Collective navigation in complex environments is essential for various applications such as search and rescue, environment monitoring and military tasks operations. Conventional methods, which are easily interpretable from an engineering perspective, divide the navigation tasks into mapping, planning, and control; however, they struggle with increased latency and unmodeled environmental factors. Recently, learning-based methods have addressed these problems by employing the end-to-end framework with neural networks. Nonetheless, most existing learning-based approaches face challenges in complex scenarios particularly for navigating through a narrow gap or when a leader or informed UAV is unavailable. Our approach uses the information of a certain number of nearest neighboring UAVs and incorporates a task-specific curriculum to reduce learning time and train a robust model. The effectiveness of the proposed algorithm is verified through an ablation study and quantitative metrics. Simulation results demonstrate that our approach outperforms existing methods.
저금리 시대의 도래로 인해 많은 투자자들이 주식 시장으로 몰리고 있다. 과거의 주식 시장은 사람들이 기업 분석 및 각자의 투자기법을 통해 노동 집약적으로 주식 투자가 이루어졌다면 최근 들어 인공지능 및 데이터를 활용하여 주식 투자가 널리 이용되고 있는 실정이다. 인공지능을 통해 주식 예측의 성공률은 현재 높지 않아 다양한 인공지능 모델을 통해 주식 예측률을 높이는 시도를 하고 있다. 본 연구에서는 다양한 인공지능 모델에 대해 살펴보고 각 모델들간의 장단점 및 예측률을 파악하고자 한다. 이를 위해, 본 연구에서는 주식예측 인공지능 프로그램으로 인공신경망(ANN), 심층 학습 또는 딥 러닝(DNN), k-최근접 이웃 알고리즘(k-NN), 합성곱 신경망(CNN), 순환 신경망(RNN), LSTM에 대해 살펴보고자 한다.
본 논문은 가상 생태계의 개념과 가상생태계를 구현하는데 중요하게 사용되어 질 수 있는 세 가지 수학적-물리학적 접근법을 응용 예와 함께 소개 하였다. 가상생태계란 개체기반 모델로써 인공생명체들이 가상 환경하에서 스스로 행동하면서 살아가는 것을 모사하는 컴퓨터 내에 구현된 생태계를 의미한다. 생물의 무리행동을 전산 모사하는 분자동역학모사 접근법과, 흰개미 영토를 전산 모사하는 확률적 격자모델 접근법, 그리고 생물막 성장을 전산 모사하는 규칙기반-세포자동자모델 접근법을 소개하였다. 실 생태계와의 유사성을 높이기 위해 가상생태계 모델은 많은 변수들을 사용하여야 하지만, 기술적인 측면에서 이러한 변수들을 모두 결정하기는 어렵다. 그러나 현재의 눈부신 컴퓨터 성능향상에 힘입어 많은 부분이 극복 되어 지고 있다. 특히, 가상생태계는 기후변화와 같은 환경재앙을 포함하여 많은 복잡한 생태학적 현상을 개체수준의 낮은 계층에서부터 생물집단 또는 외부 환경수준과 같은 높은 계층까지를 통합적으로 이해하는데 큰 도움을 줄수 있을 것이다. 마지막으로 논문에서는 높은 수준의 계층인 기후변화가 낮은 수준의 계층인 개체기반의 흰개미 생태계에 미치는 복잡한 문제를 어떻게 다룰 수 있는지에 대한 예를 들고 간략하게 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.