• Title/Summary/Keyword: Floc Size

Search Result 96, Processing Time 0.021 seconds

Comparisons of Sludge Pre-Treatment Systems : Hydrodynamic vs Ultrasonic Cavitation (수리동력학적 및 초음파 캐비테이션 슬러지 전처리 장치의 비교 연구)

  • Maeng, Jang-Woo;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.90-95
    • /
    • 2009
  • Sludge pre-treatment utilizing cavitation is one of the commercialized methods at present. Cavitation can be generated by two different methods, sonotrode and hydrodynamic principle, and there has been no direct comparison between the two methods. In this study, solubilization efficiency, changes in sludge size distribution, and the methane production potential after pre-treatment by the two methods were compared. The maximum solubilization efficiency per unit energy input with the two methods was similar, and was 302 mg ${\Delta}SCOD/g$ TS at the energy input of 0.18 kWh/L. Break-up of sludge flocs were dominant during the early period of pre-treatment, while cell disintegration continued through the pre-treatment with the increase in the number of particles with less than 1 ${\mu}m$. BMP test results indicated that the methane potential increased up to 24.3% without differences between the two pre-treatments, and the increase in methane potential did not proportional to energy input. Although the energy efficiency of the two methods was quite similar, hydrodynamic methods might be a better choice for field application considering the operation and maintenance cost, and its potential improvement in energy efficiency.

Study on solubilization of sewage sludge using electrolysis techniques (전기분해에 의한 하수슬러지 가용 효과 연구)

  • Lee, Ji-Sun;Chang, In-Soung;Lee, Chul-Ku;Joung, Seun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.979-984
    • /
    • 2011
  • Although sludge production has been increased due to the number of the wastewater treatment plants expanded, needs of the techniques for the sludge reduction and disposal has been issued importantly because the sludge dumping to ocean is prohibited from 2012 by the London Dumping Convention. Therefore, the sludge solubilization using electrolysis as an alternative techniques for the sludge disposal was carried out in this study. Iridium coated titanium based insoluble electrodes were used and 20 volt was applied to the electrolysis reactor using DC power supply. Supernatants of the treated sludge was monitored: The soluble COD, TN, TP of it was increased to 151%, 22% and 6% respectively. And the sludge floc size distribution was changed, that is, the flocs ranged from 0.1 to 1.0 ${\mu}m$ were increased. All of these results indicate that the cells were lysed and the internal matters bursted out of the cell after electrolysis. As well as the reduction of the sludge production, the soluble organic matters from the cells could be used as an external carbon sources in the advanced wastewater treatment plants.

Changes in hematological parameters and plasma components of olive flounder, Paralichthys olivaceus exposed to acute microplastics (넙치, Paralichthys olivaceus의 미세플라스틱 급성 노출에 따른 혈액성상 및 혈장성분의 변화)

  • Kim, So-Hee;Kim, Ga-Hyun;Kim, Ji-Su;Kim, Jun-Hwan;Jeon, Yu-Hyeon;Cho, Jae-Hwang;Kim, Seok-Ryel;Kim, Dae-Hee
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.344-353
    • /
    • 2021
  • Juvenile olive flounder, Paralichthys olivaceus (mean weight 66.7±7.1 g; mean length 19.2±0.9 cm) in a bio-floc environment were exposed to microplastic (PE: polyethylene, size 40-48 ㎛) at 0, 4, 20, 100, 500 and 2,500 mg L-1 for 96 hours. No P. olivaceus deaths were observed following microplastic exposure. In the plasma components, calcium was significantly decreased whereas there was no significant change with magnesium following microplastic exposure. Glucose was significantly decreased with over 100mg L-1 at 48 hours and 20mg L-1 at 96 hours. Cholesterol was significantly decreased with over 20mg L-1 after 48 hours, whereas there was no significant change in the total protein content. In enzymatic plasma components, the AST(Aspartate aminotransferase) was significant decreased by microplastic exposure. The results of this study indicate that acute exposure to microplastic induces blood physiological changes in P. olivaceus.

Effect of Fouling Reducing Additives on Membrane Filtration Resistance of Activated Sludge (막오염 감소제가 활성슬러지의 여과저항에 미치는 영향)

  • Chung, Tai Hak;Lee, Jong Hoon;Kim, Hyoung Gun;Bae, Young Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.406-413
    • /
    • 2012
  • Effect of three additives, chitosan, ferric chloride, and MPE50 on membrane fouling reduction was studied. They were introduced with various dosing rate into activated sludge, and changes in filtration resistance measured by the batch cell filtration test were evaluated. Both the filtration resistance and the specific cake resistance were minimized at 20 mg/g-MLSS with chitosan, 70 mg/g-MLSS with ferric chloride, and 20 mg/g-MLSS with MPE50 addition, respectively. Introduction of the additives into the activated sludge resulted in reduction of not only cake resistance, but also fouling resistance. However, the chitosan addition to three different activated sludge resulted in three different optimal dose of 10, 20, 30 mg/g-MLSS, respectively. This implies that the optimal dose is dependent on sludge characteristics rather than a constant value. Overdose above the optimal dosage always aggravated filterability in all cases. Zeta potential of sludge flocs, relative hydrophobicity, floc size distribution, soluble EPS concentration and supernatant turbidity were measured in order to analyze fouling reduction mechanism. Nearly neutral surface charge along with the largest particle size was observed at the optimal dose. This could be explained by particle destabilization and restabilization mechanism as positively charged additives were injected into sludge flocs of negative surface charge. Both soluble EPS concentration and supernatant turbidity also showed the lowest value at the optimal dose. These foulants are believed to be coagulated and entrapped in sludge flocs during flocculation. Chitosan and MPE50 which are cationic polymeric substances showed higher reduction in both soluble EPS and fine particles comparing with ferric chloride.

An Experimental Study on Flocculation and Settling of Fine-grained Suspended Sediments (부유물질의 응접작용 및 침전특성에 관한 실험적 연구)

  • Chu, Yong-Shik;Park, Yong-Ahn;Lee, Hee-Jun;Park, Kwang-Soon;Kweon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.40-49
    • /
    • 1999
  • A laboratory flume experiment, using turbulence-generating acryl tank and natural sediments, was conducted to investigate the effects of salinity, concentration of suspended sediment, turbulence and clay minerals on the flocculation and settling of fine-grained suspended sediments. While experiments were run, a sequence of water samples were taken near the bottom of the tank to analyze the variations of size distribution and relative contents of clay minerals. The results of the salinity experiment indicate that median settling velocity ($W_{50}$) increases linearly with salinity. Different settling processes of suspended sediments under variable concentrations appear to be predictable, depending upon the range of the suspension concentration. At concentrations less than 200 mg/l, $W_{50}$ is rarely varied with concentration probably because of the individual--grain settling mode. In the range of 200 to 13,000 mg/l show $W_{50}$ and concentration a good relationship following an empirical formula: $W_{50}=0.45C^{0.44}$. This relationship, however, no longer holds in concentrations exceeding 13,000 mg/l; instead, a more or less reverse one is shown. This result suggests an effect of hindered settling. The turbulence effect is somewhat different from that of concentration. Turbulence accelerates the flocculation and settling susepended sediments at low concentration (200 mg/l), whereas at high concentration turbulence breaks floes down and impedes the settling. Size distribution of suspended sediments sampled near the bottom of the tank tend to be more negatively skewed and leptokurtic in turbulent conditions compared to those in static conditions. The clay mineral analysis from the sequential water samples shows that over time the content of smectite decreases most rapidly with illite remaining concentrated in suspension. This means that smectite, among other clay minerals, plays the most effective role in the flocculation of fine-grained sediment in saline water.

  • PDF

Investigation of the effect of water chemistry on biologically mediated flocculation in the aquatic environment (수질화학 조성이 수자원환경에서의 미세 부유입자 응집 거동에 미치는 영향 연구)

  • Choi, Jeong Wooa;Lee, Byung Joon
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.715-723
    • /
    • 2017
  • Extracellular Polymeric Substances (EPS) in the water environment assemble fine, colloidal particles, such as clays, microorganisms and biomass, in large flocs, which are eventually subject to sedimentation and deposition and determine water/sediment quality and quantity. This study hence aimed to investigate the way that water and colloidal chemistry affects EPS-mediated flocculation of colloidal particles, using a jar-test experiment. Especially, ionic strength, divalent cation and humic substances concentrations were selected as experimental variables in the jar-test experiments, to elucidate their effects on EPS-mediated flocculation. A higher ionic strength increased flocculation capability, reducing electrostatic repulsion between EPS-attached colloidal particles and enhancing particle aggregation. 0.1 M NaCl ionic strength had higher flocculation capability, with 3 times larger floc size and 2.5 times lower suspended solid concentration, than 0.001 M NaCl. Divalent cations, such as $Ca^{2+}$, built divalent cationic bridges between colloidal particles and EPS (i.e., $colloid-Ca^{2+}-EPS$ or $EPS-Ca^{2+}-EPS$) and hence made colloidal particles to build into large, settelable flocs. A small $Ca^{2+}$ concentration enhanced flocculation capability, reducing suspended solid concentration 20 times lower than the initial dosed concentration. However, humic substances, adsorbed on colloidal particles, reduced flocculation, because they blocked EPS adsorption on colloidal particles and increased negative charges and electrostatic repulsion of colloidal particles. Suspended solid concentration in the tests with humic substances remained as high as the initial dosed concentration, indicating stabilization rather than flocculation. Findings about EPS-mediated flocculation in this research will be used for better understanding the fate and transport of colloidal particles in the water environment and for developing the best management practices for water/sediment quality.