• Title/Summary/Keyword: Floating Structure

Search Result 702, Processing Time 0.024 seconds

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Investigation of Load Transfer Characteristics at Slab Joints In The Floating Slab Track by Equivalent Shear Spring Model (등가 전단 스프링 모델을 이용한 플로팅 슬래브궤도 연결부에서의 하중전달 특성 분석)

  • Jang, Seung-Yup;Ahn, Mi-Kyoung;Choi, Won-Il;Park, Man-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2838-2843
    • /
    • 2011
  • Recently, the floating slab track that can effectively mitigate the vibration and structure-borne noise is being discussed to be adopted. The floating slab track which is a track system isolated from the sub-structure by vibration isolators. Unsimilarly to conventional track and the slab deflection is large. Therefore, the running safety and ride comfort should be investigated. Especially at slab joint since the load cannot be transferred, the possibility that the dynamic behavior of track and train became unstable is high. Thus, in general dowel bar are often installed at slab joints. To determine the appropriate dowel ratio the load transfer characteristics should be investigated. In this study, dowel bar joint is modeled by equivalent shear spring and this model is verified by comparison with experimental results. Using the proven model, the load transfer efficiency and deflection at slab joint according to dowel ratio, and stiffness and spacing of vibration isolator were examined.

  • PDF

Responses of Submerged Double Hull Pontoon/Membrane Breakwater

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.19-28
    • /
    • 2005
  • The present paper outlines the numerical investigation of the incident wave interactions with fully submerged and floating dual double hull pontoon/vertical porous membrane breakwaters. Two dimensional five fluid-domains hydro-elastic formulation was carried out in the context of linear wave body interaction theory to study the wave interaction with the double hull of pontoon-membranes. The submerged circular pontoon is consisted of double hulls, which is filled with water in the void space between the outer structure and inner solid buoyant structure. Hydrodynamic characteristics of the proposed system with dual floating double-hull-pontoons filled with water have been studied numerically for the various incident waves. This study is a beginning stage research for the dual double hull porous pontoons/vertical porous membranes breakwaters which is ideally designed in order to suppress significantly the transmitted and reflected waves simultaneously.

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Kwak, Moon-K.;Seong, Kwan-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.674-679
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper, we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

  • PDF

On the characteristics of the motion and the mooring force of a mid-layer type floating structure in waves

  • Miyahara, Rie;Shoji, Kuniaki;Mita, Sigeo;Nagase, Risa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.226-234
    • /
    • 2004
  • In this study experiments are conducted with a mid-layer type structure. This structure can operate not only at water surface but also in water. Six degrees of freedom oscillations of the structure and mooring force were measured by model experiments. From these experiments, it was shown that the lattice model has two peaks in the surge response curve and the oscillation amplitude and mooring forces increase according to the distance of separation between water level and upper deck.

  • PDF

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Seong, Kwan-Jae;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1030-1036
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper. we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

Study on Motion and Mooring Characteristics of Floating Vertical Axis Wind Turbine System (부유식 수직축 풍력발전 시스템의 운동특성 및 계류특성에 대한 연구)

  • Jang, Min-Suk;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Kim, Jae-Heui;Kim, Hyen-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the results of an experimental study on the motions and mooring characteristics of a floating vertical axis wind turbine system. Based on a comparison of regular wave experiment results, the motions of structures with different types of mooring are almost the same. Based on the tension response results of a regular wave experiment with a catenary mooring system, the mooring lines in front of the structure have a larger tension effect than the back of the structure by the drifted offset of the structure. The dynamic response spectrum of the structure in the irregular wave experiments showed no significant differences in response to differences in the mooring system. As a result of the comparison of the tension response spectra, the mooring lines have a larger value with a drifted offset for the structure, as shown in the previous regular wave experiment. The results of the dynamic response of the structure under irregular wave and wind conditions showed that the heave motion response is influenced by the coupled effect with the mooring lines of the surge and pitch motion due to the drifted offset and steady heeling. In addition, the mooring lines in front of the structure have a very large tension force compared to the mooring lines in back of the structure as a result of the drifted offset of the structure.

A Study on Steel Properties for Floating Photovoltaic System Structure (수상태양광 구조물의 강재특성에 관한 연구)

  • Choi, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5400-5405
    • /
    • 2014
  • For the development of a floating photovoltaic system, materials with light weight and high tensile strength must be applied to reduce the burden on buoyancy, and material characteristics with high resistance to corrosion in water environment is required. Accordingly, a new high strength steel material with improved strength, durability, manufacturability, and weldability that are appropriate for floating photovoltaic system structures is needed. This paper reports the results of a mechanical load test and steel corrosion test on general steel (SS400) and high strength steel (POSH 690) for the selection of an appropriate steel material for a floating photovoltaic system. The results of a test on new high strength steel revealed excellent mechanical performance compared to general steel. The new steel material was manufactured for use in an actual site, and the weight was reduced by approximately 30~40% compared to existing general steel.

Hydrodynamic-Structural Response Coupling Analysis to a Rectangle Floating Structures (장방형 부유구조물에 대한 동유체력-구조응답 특성)

  • Oh, Young-Cheol;Gim, Ok-Sok;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.577-583
    • /
    • 2012
  • Structures floating in the ocean experience various kinds of external loads, among which wave load is considered as determining factor in structural design. Its relative size compared with wavelength may be used to classify whether the structure is relatively small or large. Traditionally, the small structures are assumed to have little diffraction and the wave loads on large structure are usually calculated by only considering inertia force according to diffraction. In this paper, rectangular floating structures usually used in the ocean, river, and lake are used to find the relationship between hydrodynamic forces and its structural response.