• 제목/요약/키워드: Floating Slab

검색결과 72건 처리시간 0.025초

완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구 (The Effect of Dynamic Property of Absorbing Sheet on the Amplification of Heavy Weight Floor Impact Noise)

  • 황재승;문대호;박홍근;홍성걸;홍건호
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.651-657
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50 dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6~7 dB compared to the conventional slab system at the optimal stud location.

슬래브궤도의 방진효율성 평가기법 개발 (Development of Evaluation Method of Vibration-Reduction Efficiency in Slab Track)

  • 양신추;강윤석;김만철;이종득
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.463-470
    • /
    • 1999
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effect of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석 (An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis)

  • 문대호;박홍근;황재승;홍건호
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

복합지지구조를 가진 뜬바닥 시스템 (II) (Floating Floor of Multi-supporting System ( II ))

  • 박영환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.293-295
    • /
    • 2004
  • In this research, we suggest the effective technique that the thickness of slab isn't increased, and considering proper shock absorbing material and supporting point, we make the floating floor which has multi-supporting system floating floor. As the result, it is effective in reduction of heavy weight system as well as one of light weight

  • PDF

복합지지구조를 가진 뜬바닥 시스템 (Floating Floor of Multi-Supporting System)

  • 박영환;정환돈;오호진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.928-931
    • /
    • 2003
  • In this research, we suggest the effective technique that the thickness of slab isn't increased, and considering proper shock absorbing material and supporting point, we make the floating floor which has multi-supporting system floating nut. As the result, it is effective in reduction of heavy weight system as well as one of light weight

  • PDF

철도 방진 슬라브 궤도의 동특성 해석 (Dynamic Analysis of Floating Slab Isolation System for Train)

  • 한현희;이규섭;장승엽;박만호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.819-822
    • /
    • 2009
  • 환경 소음,진동 개선의 측면에서 철도 레일 하부로 전달되는 진동 및 구조소음을 효과적으로 차단하기 위하여 국내에서도 탄성 이산지지 구조의 플로팅 슬라브를 적용하는 경우가 증가하고 있다. 플로팅 슬라브 구조설계에 있어 주안점은 방진효율 증대와 슬라브 자체 중량의 2~3배 되는 열차 주행간의 동하중에 대한 열차 주행 안정성을 고려해야 하는 점이며 열차의 고속화 경향에 따라 동하중의 증가는 더욱 커지고 있다. 본 연구에서는 이산지지 방진장치를 적용한 철도 슬라브 궤도의 동특성과 이동질량에 의한 응답을 방진장치의 지지 간격, 스프링 상수 등을 설계변수로 하여 수치해석적 방법으로 시뮬레이션하였다.

  • PDF

플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가 (Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track)

  • 장승엽;양신추
    • 한국철도학회논문집
    • /
    • 제15권1호
    • /
    • pp.48-61
    • /
    • 2012
  • 열차 진동 저감을 위한 플로팅 슬래브궤도의 설계에 있어서 주행 안전, 승차감 및 사용성을 확보하는 것이 매우 중요하다. 본 연구에서는 플로팅 슬래브궤도에서 열차 주행안전과 승차감, 사용성 확보를 위한 요구조건을 분석하여 제시하였고, 열차-궤도 상호작용을 고려한 동적 해석기법을 적용하여 시스템 고유진동수, 스프링 지지간격 및 배치방법, 감쇠비 등 주요 시스템 설계변수에 따라 일반 콘크리트궤도와의 접속구간을 포함한 플로팅 슬래브궤도 구간에서의 열차 및 궤도의 동적 거동을 분석하였다. 연구결과에 따르면 일반 궤도와 플로팅슬래브궤도 간의 접속구간에서의 지지강성의 차이에 의해 윤중 변동율, 레일 응력, 레일 인상력 등의 동적 응답이 크게 증가하는 것으로 나타났으며, 따라서 접속구간에서 스프링 지지간격을 좁히거나 스프링 강성의 차이를 완화시키는 방안이 주행안전과 궤도 사용성 확보를 위해 효과적인 것으로 나타났다. 한편 차체 가속도로 평가하는 승차감은 접속구간에서의 지지강성의 차이에 의해서는 거의 영향을 받지 않고, 시스템 튜닝 주파수에 의해 가장 큰 영향을 받는 것으로 나타났으며, 승차감 확보를 위해서는 적절한 시스템 튜닝 주파수를 선정하는 것이 매우 중요한 것으로 나타났다. 이 밖에 감쇠비, 스프링 간격, 열차속도에 따른 영향을 분석하였다.

완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구 (The effect of dynamic property of absorbing sheet on the amplification of heavy weight floor impact noise)

  • 황재승;문대호;박홍근;홍성걸;홍건호;임주혁;김용남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.527-528
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6-7dB compared to the conventional slab system at the optimal stud location.

  • PDF

플로팅 궤도 슬래브-방진장치의 펀칭전단 안정성 및 피로응력 해석 (Stability of Punching Shear and Analysis Fatigue Stress of Joint of Low Vibration Floating Slab-Anti Vibration equipment)

  • 박성재;마창남;박명균;이두화;조수익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1460-1463
    • /
    • 2010
  • Railway has been pointed to the efficiency of transportation, rapid transit, and comfortable train ride. the construction of railway near the downtown area and station building are increasing for maximization of utilization and convenience. but the heavy of transportation and rapid transit lead to increase noise and vibration. The noise and vibration of railway may cause the civil appeal, decline in the serviceability and insufficiency of environmental standard. In this study, floating slab vibration and repeated connection of devices to support joints and fatigue stress analysis of punching shear performance review was conducted to evaluate the safety.

  • PDF