• 제목/요약/키워드: Floating Photovoltaic

검색결과 57건 처리시간 0.027초

Hardware-In-the-Loop 시스템을 이용한 태양광 시스템 연구 (PV System using HIL System)

  • 최주엽;최익;김병만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.665-665
    • /
    • 2005
  • The existing DSP for utility interactive photovoltaic generation system control generally uses floating point process type. Because it is easy to use for number crunching, however, it is too late and too expensive. Fixed point process DSP TMS320F2812, has high control speed and is rather inexpensive. A very complicated real system can be simulated using hardware-in-the-loop (HIL) system in a virtual environment Therefore, HIL system can speed up research and development process with a little effort. Also current DSP for utility interactive photovoltaic generation system adopts floating point process type, which is easy to use for number crunching. However, fixed point process DSF, TMS320F2812, has high control speed and is rather inexpensive. This paper presents more efficient method for MPPT control using TMS320F2812 along with HIL System.

  • PDF

마이크로그리드 운영에 따른 전력자립 향상을 위한 에너지저장장치의 적정보조금 산정 (Calculation of Appropriate Subsidies for Energy Storage System to Improve Power Self-sufficiency Consider Microgrid Operation)

  • 최연주;김성열
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.486-492
    • /
    • 2017
  • In recent years, renewable energy sources have been mentioned as solution to environmental regulation and energy supply-demand. Energy storage systems are needed to mitigate the intermittent output characteristics of renewable energy sources and to operate micro grid efficiently using renewable energy generation systems. However, despite the necessity of energy storage system, this cannot secure the economical efficiency of the energy storage system by high initial cost. In this paper, a micro grid is constructed to supply electric power to industrial customers by using solar power generation system and energy storage system among renewable energy generation power sources and operated to improve energy independence. In the case study, we use photovoltaic system which is representative renewable energy generation system. Unlike conventional photovoltaic system, this system uses floating photovoltaic system with the advantage of having high output and no land area limitations. It is operated for the purpose of improving energy independence in the micro grid. In order to secure economical efficiency, the energy storage system operates a micro grid with a minimum capacity. Finally, this paper calculates the appropriate subsidy for the energy storage capacity.

1,200 V급 Floating Island IGBT의 관한 연구 (Study of the 1,200 V-Class Floating Island IGBT)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.523-526
    • /
    • 2016
  • This paper was researched about 1,200 V level floating island IGBT (insulated gate bipolar transistor). Presently, 1,200 V level IGBT is used in Inverter for distributed power generation. We analyzed and compared electrical charateristics of the proposed floating island IGBT and conventional IGBT. For analyzing and comparison, we used T-CAD tool and simulated the electrical charateristics of the devices. And we extracted optimal design and process parameter of the devices. As a result of experiments, we obtained 1,456 V and 1,459 V of breakdown voltages, respectively. And we obatined 4.06 V and 4.09 V of threshold voltages, respectively. On the other hand, on-state voltage drop of floating island IGBT was 3.75 V. but on-state vlotage drop of the conventional IGBT was 4.65 V. Therefore, we almost knew that the proposed floating island IGBT was superior than the conventional IGBT in terms of power dissipation.

Analytical strategies for floating solar PV policy development in South Korea

  • Lee, Youhyun;Kim, Kyoungmin
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.7-14
    • /
    • 2022
  • Using the SWOT-AHP method, this study identifies the priorities in the development of floating solar photovoltaics (PV) and suggests possible strategies. Our study analyzed the priorities in planning future solar PV strategies based on the opinions of 27 experts. Our results indicate that the government should expand support while emphasizing the benefit of floating solar PV in that it causes less environmental damage compared to onshore solar PV. In addition, the government should properly deal with the public-private conflict regarding the installation of floating solar PV. Floating solar PV itself has not reached a mature technological and institutional stage, but could be an option or alternative for saturated onshore solar PV facilities in Korea.

저수지 내 수상태양광의 전압 강하에 의한 직류 송전 손실 (Transmission Loss from Voltage Drop in a DC Cable for a Floating Photovoltaic System in a Reservoir)

  • 방병관;우성철;이원빈;최진호;신승욱;이철성;박미란;원창섭;안형근
    • 신재생에너지
    • /
    • 제16권1호
    • /
    • pp.47-57
    • /
    • 2020
  • In Floating PV (Photovoltaic) systems, PV modules are installed on water by utilizing the surface of idle water such as a reservoir and multipurpose dam. A floating PV system, therefore, has the advantage of efficiency in national land use and improved energy yield owing to cooling effect compared to on-land PV systems. Owing to the limitation of installation environment for a floating PV system, the system, however, has the disadvantage of an increase in transmission distance of DC (Direct current) cables. A longer transmission distance of a DC cable results in greater power loss due to a voltage drop. This leads to a decline in economic feasibility for the floating PV system. In this paper, the economic analysis for 10 floating PV systems installed in a reservoir has been conducted in terms of a change in annual power sales according to the variation of transmission losses depending on the factors affecting the voltage drop, such as transmission distance, cross-section area of underwater cable, the presence of joint box, and PV capacity.

플로팅 아일랜드 구조의 전력 MOSFET의 전기적 특성 분석 (Analysis of The Electrical Characteristics of Power MOSFET with Floating Island)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.199-204
    • /
    • 2016
  • This paper was proposed floating island power MOSFET for lowering on state resistance and the proposed device was maintained 600 V breakdown voltage. The electrical field distribution of floating island power MOSFET was dispersed to floating island between P-base and N-drift. Therefore, we designed higher doping concentration of drift region than doping concentration of planar type power MOSFET. And so we obtain the lower on resistance than on resistance of planar type power MOSFET. We needed the higher doping concentration of floating island than doping concentration of drift region and needed width and depth of floating island for formation of floating island region. We obtained the optimal parameters. The depth of floating island was $32{\mu}m$. The doping concentration of floating island was $5{\times}1,012cm^2$. And the width of floating island was $3{\mu}m$. As a result of designing the floating island power MOSFET, we obtained 723 V breakdown voltage and $0.108{\Omega}cm^2$ on resistance. When we compared to planar power MOSFET, the on resistance was lowered 24.5% than its of planar power MOSFET. The proposed device will be used to electrical vehicle and renewable industry.

수상 태양광발전 시스템의 풍력계수 산정에 관한 실험적 연구 (An Experimental Study on the Estimation of Wind Force Coefficient of Floating Type Photovoltaic Energy Generation System)

  • 이영근;이남형;주형중;윤순종
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.60-68
    • /
    • 2013
  • In recent years, green house effect related natural disasters occur throughout the world. Carbon dioxide, mainly comes from the fossil fuel burning, is suspected to be the cause of green house effect. To reduce the emission of carbon dioxide, we need to find alternative energy resources such as photovoltaic energy. In this paper, the basic characteristics of wind force coefficient on a PV panel installed on the floating type PV energy generation system are investigated though the two-dimensional wind tunnel tests. Test variables included the angle of PV panel, direction of wind, number of rows of PV panel and attached or not attached frame. Based on the results obtained through the wind tunnel tests, it was found that the wind force coefficient can be used as a preliminary data in the design of the structure.

수상태양광 발전시스템 설계 및 요소기술 분석 (Design and Analysis of State-of-the-Art Technologies for Development of Floating Photovoltaic System)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.227-233
    • /
    • 2014
  • Information presented in this study is intended to inform candidates as they prepare to design and structure the floatovoltaics solar power system. A developed floatovoltaics solar power generation results from the combination of PV plant technology and PV floating technology. This floating-based PV system is a new concept for PV development. The PV floating technology opens new opportunities to give value to unused areas so far while preserving valuable land for more adapted activities. Therefore the land-use conflicts are avoided and the environmental impact is minimized. Therefore the technology offers an interesting opportunity to regions facing on drought during summer time without any negative impact to the eco-system. This study describe the basic components of a floatovoltaics solar power system. A typical system consist of floating system and solar modules, a control device, rechargeable batteries, a load or device and the associated electrical connections. The floating system is specifically designed to keep all metallic components above water leaving only 100% recyclable, closed cell foam filled HDPE plastic floats in contact with the water. As the first case that can maximize the power generation efficiency of PV internationally, it is expected that this study will be utilized as a primary guide for future development of floating type PV system.

수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가 (Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems)

  • 이인주;주진철;이창신;김가영;우도영;김재학
    • 대한환경공학회지
    • /
    • 제39권5호
    • /
    • pp.255-264
    • /
    • 2017
  • 본 연구는 수상 태양광 발전시설의 설치로 인한 농업용 저수지의 수질변화를 평가하기 위해 경기도 안성시 금광저수지에 위치한 수상 회전식 태양광 발전시설에서 발전시설 설치에 따른 차광구역 6지점과 비차광구역 4지점을 선정하여 1년 동안 총 16회에 걸쳐 차광으로 인한 수질변화를 시간과 수심 별로 분석하였다. 이를 위해 수온, pH, DO, Chl-a, BGA 항목을 0.3 m, 1 m, 3 m, 5 m의 수심별로 측정하고, 표층의 시료를 채수하여 COD, TN, TP 항목을 분석하였다. 연구결과, 금광저수지 내 10곳의 측정지점 간의 관측된 전 수질항목에서 차이는 유의확률(p - value) 0.05 이상으로 유의수준(${\alpha}=0.05$)에서 서로 다르지 않다고 통계학적으로 분석되었다. 이러한 결과를 토대로 측정지점을 차광구역(site 1~6)과 비차광구역(site 7~10)으로 그룹화 후 시간 및 수심에 따른 변화를 확인하였다. 차광구역과 비차광구역 간의 수온, pH, DO, COD, TN, TP, Chl-a, BGA의 계절 및 수심에 따른 차이는 유의한 수준에서 통계학적으로 다르지 않았다(p > 0.05). Chl-a와 BGA의 경우, 7월에 비차광구역보다 차광구역에서 일부 높은 농도가 관측되었으나 이는 기록적인 가뭄과 낮은 저수량, 발전시설 구조물에 부착된 부착조류의 과다성장으로 인한 일시적 현상으로 전체 수질은 통계학적으로 유의할 만한 차이가 없는 것으로 조사되었다. 이러한 결과는 수상 회전식 태양광 발전시설의 설치로 인한 저수지 수면의 차광이 전체 수면적 대비 0.5% 미만으로 일사량 유입 감소효과는 취송 및 방류를 통한 저수지 수체의 혼합 효과 대비 미미했기 때문인 것으로 판단된다. 향후, 수상 태양광 발전시설 설치로 인한 수질변화를 면밀히 연구하기 위해서는 보다 넓은 면적의 태양광 발전시설의 설치로 인한 차광과 함께 장기적인 수질 및 수생태계 관측이 필요할 것으로 판단된다.