• Title/Summary/Keyword: Flip-Driver

Search Result 13, Processing Time 0.016 seconds

A New Design of Memory-in-Pixel with Modified S-R Flip-Flop for Low Power LCD Panel (저전력 LCD 패널을 위한 수정된 S-R 플립플롭을 가진 새로운 메모리-인-픽셀 설계)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.600-603
    • /
    • 2008
  • In this paper, a new circuit design named memory-in-pixel for low power consumption of the liquid crystal display (LCD) is presented. Since each pixel has a memory, it is able to express 8 color grades using the data saved in the memory without the operation of the gate and source driver ICs so that it can reduce the power consumption of the LCD panel. A memory circuit consists of modified S-R flip-flop (NAND-type) implemented in the pixel, which can supply AC bias for operating the liquid crystal (LC) with the interlocking clocks (CLK_A and CLK_B). This circuit is more complex than the inverter-type memory circuit, but it has lower power consumption of approximately 50% than the circuit. We have investigated the power consumption both NAND and inverter-type memory circuit using a Smart SPICE for the resolution of $96{\times}128$. The estimated power consumption of the inverter-type memory was about 0.037mW. On the other hand, the NAND-type memory showed power consumption of about 0.007mW.

  • PDF

Design of a 2.5 Gbps CMOS optical transmitter with 10:1 serializer using clock generation method (Reference clock 생성기를 이용한 10:1 데이터 변환 2.5 Gbps 광 송신기 설계)

  • Kang, Hyung-Won;Kim, Kyung-Min;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.159-165
    • /
    • 2005
  • The proposed optical transmitter is composed of FF(flip flop) , PLL (phase locked loop), reference clock generator, serializer and LD driver 10x250 Mb/s data arrays are translated to the 2.5 Gb/s data signal by serializer. In this case, 1 data bus is allocated usually as a reference clock for synchronization. In this proposed optical transmitter, 125 MHz reference clock is generated from 10x250 Mb/s data arrays by reference clock generator. From this method. absent of reference clock bus is available and more data transmission become possible. To achieve high speed operation, the serializer circuit is designed as two stacks. For 10:1 serialization, 10 clocks that have 1/10 lambda differences is essential, so the VCO (voltage controlled oscillator) composed of 10 delay buffers is designed. PLL is for runing at 250 MHz, and dual PFD(phase frequency detector) is adopted for fast locking time. The optical transmitter is designed by using 0.35 um CMOS technology.

  • PDF

Design of 250-Mbps 10-Channel CMOS Optical Receiver Away for Parallel Optical Interconnection (병렬 광 신호 전송을 위한 250-Mbps 10-채널 CMOS 광 수신기 어레이의 설계)

  • Kim, Gwang-O;Choe, Jeong-Yeol;No, Seong-Won;Im, Jin-Eop;Choe, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.25-34
    • /
    • 2000
  • This paper describes design of a 250-Mbps 10-channel optical receiver array for parallel optical interconnection with the general-purpose CMOS technology The optical receiver is one of the most important building blocks to determine performance of the parallel optical interconnection system. The chip in CMOS technology makes it possible to implement the cost-effective system also. Each data channel consists of analog front-end including the integrated photo-detector and amplifier chain, digital block with D-FF and off-chip driver. In addition, the chip includes PLL (Phase-Lock Loop) for synchronous data recovery. The chip was fabricated in a 0.65-${\mu}{\textrm}{m}$ 2-poly, 2-metal CMOS technology. Power dissipation of each channel is 330㎽ for $\pm$2.5V supply.

  • PDF