• Title/Summary/Keyword: Flight vehicles

Search Result 300, Processing Time 0.029 seconds

Monocular Vision-Based Guidance and Control for a Formation Flight

  • Cheon, Bong-kyu;Kim, Jeong-ho;Min, Chan-oh;Han, Dong-in;Cho, Kyeum-rae;Lee, Dae-woo;Seong, kie-jeong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.581-589
    • /
    • 2015
  • This paper describes a monocular vision-based formation flight technology using two fixed wing unmanned aerial vehicles. To measuring relative position and attitude of a leader aircraft, a monocular camera installed in the front of the follower aircraft captures an image of the leader, and position and attitude are measured from the image using the KLT feature point tracker and POSIT algorithm. To verify the feasibility of this vision processing algorithm, a field test was performed using two light sports aircraft, and our experimental results show that the proposed monocular vision-based measurement algorithm is feasible. Performance verification for the proposed formation flight technology was carried out using the X-Plane flight simulator. The formation flight simulation system consists of two PCs playing the role of leader and follower. When the leader flies by the command of user, the follower aircraft tracks the leader by designed guidance and a PI control law, and all the information about leader was measured using monocular vision. This simulation shows that guidance using relative attitude information tracks the leader aircraft better than not using attitude information. This simulation shows absolute average errors for the relative position as follows: X-axis: 2.88 m, Y-axis: 2.09 m, and Z-axis: 0.44 m.

A Study on Fault Tolerance System for Flight Control Computer and Memory of Small Drones (소형 드론용 비행 제어기 및 메모리를 위한 고장 감내 시스템 연구)

  • Lee, Jeongdu;Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.425-431
    • /
    • 2020
  • The market for small unmanned aerial vehicles (SUAVs) is growing rapidly as technology advances and makes it possible to use them in various fields. However, due to the rapid increase in small drones, breakdowns, collisions and falls are also increasing year by year, and technologies for reducing accident and securing safety are being actively researched. In particular, the application of a fault tolerance system to cope with unexpected failures during flight is essential. According to data released by the US Department of Defense, accidents caused by errors in flight control computers account for about 28% of all accidents. This paper describes the proposal of flight control computer system's dual structure design to tolerate flight control system failure.

Total System Error Analysis for Corridor derivation of Hybrid VTOL through Flight Test (비행시험을 통한 복합형 수직이착륙 무인항공기의 회랑 산출을 위한 통합시스템오차 분석)

  • Jeong-min Kim;Song-geun Eom;Jeong-hwan Oh;Dong-jin Lee;Do-yoon Kim;Sang-hyuck Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.448-455
    • /
    • 2022
  • In this study, when establishing a UTM(UAS Traffic Management) system, a corridor must be set to separate the flight distance between unmanned aerial vehicles, and the size of the corridor was calculated in consideration of TSE(Total System Error). The flight data of the straight section and the turning section were collected using a hybrid vertical take-off and landing unmanned aerial vehicle. The flight data were derived from the TSE using the SQSM(Scalar Quantity Summation Method) method, and the impact on the straight and turning sections was analyzed by calculating in detail by NSE(Navigation System Error) and FTE(Flight Technical Error). The corridor size was calculated by referring to the TSE analysis results and PBN (Performance-based Navigation) manual.

Development of an electric powered, high speed, low-noise, small aerial target drone platform (전기 동력 고속 저소음 소형 대공 표적기 플랫폼 개발)

  • Taekyoon Kim;Youngjin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • Recently, from a global perspective, the use of small unmanned aerial vehicles in terrorism and warfare is increasing, and the need for anti-drone shooting training targeting small UAVs is increasing. However, in reality, there are many cases in Korea where anti-drone shooting training is restricted, due to complaints such as noise. In this paper, we describe the development and testing of an electric-powered direct strike type high-speed, low-noise small aerial target drone. To achieve the flight speed and endurance required for shooting training, target drone sizing was performed, and aerodynamic performance analysis was conducted using a CFD program. Based on the performance analysis, the motor propulsion system was selected and a variable pitch propeller system was designed, and performance tests were performed on a ground test rig. Finally, the target flight speed, flight time, and flight noise level were confirmed through flight tests.

Experimental Verification on the Extending Flight Time of Solar Paper for Drone using Battery for Electric Vehicles (장기 체공 태양광 드론의 비행시간 연장에 관한 실험적 검증)

  • Wooram Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.229-235
    • /
    • 2023
  • Recently, for drones to be used for agricultural applications, it is necessary to increase the payload and extending flight time. Currently, the payload and extending flight time are limited by the battery technology for solar paper drone. In addition, charging or replacing the batteries may be a practical solution at the field that requires near continuous operation. In this paper, the procedure to optimize the main power system of an electric hybrid drone that consists of a battery and electric motor is presented. As a result, the solar paper drone flied successfully for 2-3%. The developed solar paper drone consumes and average of 55W when cruising and can receive up to 25W of energy during the day, and its extending flight time was verified through flight tests.

Leaderless Formation Control Strategy and Stability Analysis for Multiple UAVs (리더가 없는 방식의 다수 무인기 편대비행 제어와 안정성 해석)

  • Seo, Joong-Bo;Ahn, Chae-Ick;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.988-995
    • /
    • 2008
  • A consensus-based feedback linearization method is proposed to maintain a specified time-varying geometric configuration for formation flying of multiple autonomous vehicles. In this approach, there exists no explicit leader in the team, and the proposed control strategy requires only the local neighbor-to-neighbor information between vehicles. The information flow topology between the vehicles is defined by Graph Laplacian matrix, and the formation flying can be achieved by the proposed feedback linearization with consensus algorithm. The stability analysis of the proposed controller is also performed via eigenvalue analysis for the closed-looop system. Numerical simulation is performed for rotary-wing type micro aerial vehicles to validate the performance of the proposed controller.

Community Driving using Distance Control between Vehicles (차량 간 거리 제어를 이용한 군집 주행)

  • Park, Jin-Chun;Kim, Min-Kyu;Lee, Moon-Hyuk;Han, Hee-Ju;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1071-1078
    • /
    • 2018
  • In this paper, we implemented community driving system for auto-vehicles as a preceding research of drone's community flight. We used ultrasonic sensors in order to measure the distance between vehicles, and designed each vehicles to maintain specific distance to each other, by making the following vehicle to stop moving when the distance is closed to less than 20cm, to start moving when the distance increases to more than 30cm. We have also designed vehicle to accelerate until the distance is closed to 30cm when they are apart for more than 40cm due to contingencies during driving.

A Study on the System Configuration and Communication Equipment Operation for Mission and Control of Small UAV (소형 무인항공기의 임무 및 제어를 위한 시스템 구성과 통신 장비 운용에 대한 연구)

  • Ha, Young-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.118-124
    • /
    • 2019
  • As Unmanned Aerial Vehicles technology has been widespread, various types of unmanned aircraft and mission equipment have been developed in line with mission diversification. Especially in Korea, small unmanned aerial vehicles have been actively developed. In addition, flight control system and mission equipment interface system for effective control of small unmanned aerial vehicles, efficient communication system configuration and operation for transmission to ground operated systems by processing data are required. This paper addresses efficient system structure and operation of communication equipment for missions and control of small unmanned aerial vehicles.

Research and Development Trends of a Hypersonic Glide Vehicle (HGV) (극초음속 활공 비행체(HGV)의 연구개발 동향)

  • Hwang, Ki-Young;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.731-743
    • /
    • 2020
  • The hypersonic glide vehicle ascends to a high altitude by a rocket booster, separates it from the booster, and glides at a hypersonic speed of Mach 5 or higher at an altitude of about 30~70 km, changing its direction in the atmosphere. Since it moves on an unpredictable flight path rather than a parabolic trajectory, it is difficult to intercept with current missile defense systems. The U.S. conducted HTV-2 and AHW flight tests in the early 2010s to confirm the possibility of hypersonic gliding flights, and recently it has been developing hypersonic glide vehicle systems such as LRHW and ARRW. China has conducted several flight tests of the DF-ZF (WU-14) glide vehicle since 2014 and has been operating it with DF-17 missiles. Russia has conducted hypersonic glide vehicle research since the former Soviet Union, but it has repeatedly failed, and recently it has been successfully tested with the Avangard (Yu-71) glide vehicle mounted on the SS-19 ICBM. In this paper, the characteristics, flight test cases, and development trends of hypersonic glide vehicles developed or currently being developed in the United States, China, Russia, Japan, India, and Europe are reviewed and summarized.

Usefulness of Drones in the Urban Delivery System: Solving the Vehicle and Drone Routing Problem with Time Window (배송 네트워크에서 드론의 유용성 검증: 차량과 드론을 혼용한 배송 네트워크의 경로계획)

  • Chung, Yerim;Park, Taejoon;Min, Yunhong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.75-96
    • /
    • 2016
  • This paper investigates the usefulness of drones in an urban delivery system. We define the vehicle and drone routing problem with time window (VDRPTW) and present a model that can describe a dual mode delivery system consisting of drones and vehicles in the metropolitan area. Drones are relatively free from traffic congestion but have limited flight range and capacity. Vehicles are not free from traffic congestion, and the complexity of urban road network reduces the efficiency of vehicles. Using drones and vehicles together can reduce inefficiency of the urban delivery system because of their complementary cooperation. In this paper, we assume that drones operate in a point-to-point manner between the depot and customers, and that customers in the need of fast delivery are willing to pay additional charges. For the experiment datasets, we use instances of Solomon (1987), which are well known in the Vehicle Routing Problem society. Moreover, to mirror the urban logistics demand trend, customers who want fast delivery are added to the Solomon's instances. We propose a hybrid evolutionary algorithm for solving VDRPTW. The experiment results provide different useful insights according to the geographical distributions of customers. In the instances where customers are randomly located and in instances where some customers are randomly located while others form some clusters, the dual mode delivery system displays lower total cost and higher customer satisfaction. In instances with clustered customers, the dual mode delivery system exhibits narrow competition for the total cost with the delivery system that uses only vehicles. In this case, using drones and vehicles together can reduce the level of dissatisfaction of customers who take their cargo over the time-window. From the view point of strategic flexibility, the dual mode delivery system appears to be more interesting. In meeting the objective of maximizing customer satisfaction, the use of drones and vehicles incurs less cost and requires fewer resources.