• 제목/요약/키워드: Flight vehicles

검색결과 300건 처리시간 0.031초

미세파편 및 입자를 활용한 극초음속 비행체 요격 연구 (A Study on the Interception using Fine Fragments and Particles to Hypersonic Vehicles)

  • 김인수;강봉주;김성표;윤종원;김성훈
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.285-293
    • /
    • 2024
  • This paper describes the interception using fine fragments and particles to hypersonic vehicles which have a vulnerability in thermal and pressure during glide-phase flight. This interception concept is based on the fast relative velocity and the flight vulnerability of hypersonic vehicles. For the density calculation of fragmentation and particle in interception, error analysis of end-phase was performed including radar, intercept missile and target maneuvering errors. In relation to the vulnerability and error analysis, the penetration characteristics of fine fragments in high temperature were analyzed. Presented the interception in glide-phase could be applied to the concept of horizontal multi-layer defense to hypersonic vehicles.

다중 무인 항공기의 협동 작업을 위한 무 충돌 비행 계획 (Collision-free Flight Planning for Cooperation of Multiple Unmanned Aerial Vehicles)

  • 박재병
    • 전자공학회논문지SC
    • /
    • 제49권2호
    • /
    • pp.63-70
    • /
    • 2012
  • 본 논문에서는 3차원 공동 작업 공간에서 다중 무인항공기의 협동 작업을 위한 확장 충돌 지도 기반 무 충돌 비행 계획 기법을 제안한다. 먼저 무인항공기는 회전과 같은 3차원 움직임을 고려해 구로 모델링하였다. 공동 작업 영역에 진입 후 진출할 때까지 무인 항공기는 직선 경로를 따라 이동하고 모든 무인 항공기의 우선순위는 미리 정해져 있다고 가정한다. 가정에 따라 3차원에서 정의된 구와 구 사이의 충돌 검출 문제를 2차원에서 정의된 원과 직선 사이의 충돌 검출 문제로 축소할 수 있다. 원과 직선 사이의 충돌영역은 계산의 편의성과 안전성을 위해 충돌사각형으로 근사화 하였다. 이렇게 정의된 충돌사각형을 이용하여 무인 항공기들 간의 충돌을 회피할 수 있도록 각 무인 항공기의 공동 작업 공간 진입 시간을 조율한다. 이와 같은 방법으로 모든 무인 항공기는 공동 작업 공간에 진입해서 진출할 때까지 서로 간에 충돌 없이 이동 할 수 있게 된다. 제안된 무충돌 비행 계획의 효율성을 증명하기 위해 12대의 무인 항공기를 이용한 시뮬레이션을 수행하였다.

날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석 (Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles)

  • 김중관;한종섭;김호영;한재흥
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.

곤충의 호버링 비행을 구현하는 메카니즘의 설계 (Design of a Mechanism for Reproducing Hovering Flight of Insects)

  • 정세용;최용제
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

Ground Test and Evaluation of a Flight Control Systemfor Unmanned Aerial Vehicles

  • Suk, Jin-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제5권1호
    • /
    • pp.57-63
    • /
    • 2004
  • UAV(Unmanned Aerial Vehicle) has become one of the most popularmilitary/commercial aerial robots in the new millennium. In spite of all theadvantages that UAVs inherently have, it is not an easv job to develop a UAVbecause it requires very systematic and complete approaches in full developmentenvelop. The ground test and evaluation phase has the utmost importance in thesense that a well-developed system can be best verified on the ground. In addition,many of the aircraft crashes in the flight tests were resulted from the incompletedevelopment procedure. In this research, a verification procedure of the wholeairbome integrated system was conducted including the flight management system.An airbome flight control computer(FCC) senses the extemal environment from thepehpheral devices and sends the control signal to the actuating system using theassigned control logic and flight test strategy. A ground test station controls themission during the test while the downlink data are transferred from the flightmanagement computer using the serial communication interface. The pilot controlbox also applies additional manual actuating commands. The whole system wastested/verified on the wind-tunnel system, which gave a good pitch controlperformance with a preUspecified flight test procedure. The ground test systemguarantees the performance of fundamental functions of airbome electronic systemfor the future flight tests.

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

Compromise Optimal Design using Control-based Analysis of Hypersonic Vehicles

  • Liu, Yanbin;bing, Hua
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.137-147
    • /
    • 2015
  • Hypersonic vehicles exhibit distinct dynamic and static characteristics, such as unstable dynamics, strict altitude angle limitation, large control bandwidth, and unconventional system sensitivity. In this study, compromise relations between the dynamic features and static performances for hypersonic vehicles are investigated. A compromise optimal design for hypersonic vehicles is discussed. A parametric model for analyzing the dynamic and static characteristics is established, and then the optimal performance indices are provided according to the different design goals. A compromise optimization method to balance the dynamic and static characteristics is also discussed. The feasibility of this method for hypersonic vehicles is demonstrated.

나로호(KSLV-I) 1차 비행시험 비행안전 운영 (Flight Safety Operation for the 1st Flight Test of Naro(KSLV-I))

  • 고정환;최규성;심형석;노웅래;박정주;조광래
    • 한국항공우주학회지
    • /
    • 제38권3호
    • /
    • pp.280-287
    • /
    • 2010
  • 한국 최초의 위성발사체 나로호(KSLV-I)의 1차 비행시험이 2009년 8월 25일 전라남도 고흥의 나로우주센터에서 실행되었다. 다량의 연료를 싣고 장거리를 비행하는 우주발사체의 특성상 비행중의 비정상 상황에 대한 대비는 매우 중요하며, 본 논문에서는 KSLV-I 발사운영의 안전확보를 위해 진행된 비행안전 업무를 기술하였다. 비행시험 전, 비행시의 비정상 상황으로 인한 위험도 분석을 위한 비행안전 분석이 진행되어 정량적인 위험성을 평가하였으며, 발사시에는 비행안전시스템을 운영하여 위험에 대비하였다. 비행중 추적데이터를 이용한 순간낙하점 계산과 비행상황 감시는 정상적으로 운영되었으며, 비행종단시스템의 동작없이 비행시험을 완료하였다.

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.