• Title/Summary/Keyword: Flight path

Search Result 247, Processing Time 0.023 seconds

Location and Direction Tracking of Small UAVs on Occlusion Area in Moving Surveillance System (이동보안시스템에서 폐색영역에서의 소형무인비행체 위치 및 방향 추적)

  • Moon, Yong-Ho;Cheon, Seung-Hyeon;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.317-324
    • /
    • 2015
  • In his paper, we propose the graphic-based direction tracking system that be able to detect the current location and direction of the flight object and virtually run the pointing to the flight direction when a small UAV is located in the occlusion area behind buildings or obstacles in the moving surveillance systems. Based on the experimental results about the simulation flight path extracted from the Mission Planner we found the proposed system operates the desired flight mission effectively in tracking.

A Study on the Prediction of Aircraft Noise Level at Jeju International Airport (제주국제공항에서의 항공기 소음 예측에 관한 고찰)

  • Lee, Jun-Ho;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.387-397
    • /
    • 2014
  • This study is carried out to propose an empirical equation which can promptly predict the aircraft noise level at a specific point (a receptor) near Jeju international airport by using the information of the flight path data. For this purpose, Analyses of multiple linear regression with the slant distances (SD) calculated from the gate analyses of the flight path data, aircraft noise certification levels with unit of EPNL(effective perceived noise level) and noise levels measured at receptors are performed by SPSS package. From these regression analyses for approach and departure of aircraft, we can propose empirical equations which is statistically significant. The noise levels predicted by these empirical equations are highly correlated the measured data.

PULSED NEUTRON FACILITY BASED ON AN ELECTRON LINAC

  • Kim, Guin-Yun;Son, Dong-Chul;Lee, Young-Seok;Ko, In-Soo;Cho, Moo-Hyun;Namkung, Won;Chang, Jong-Hwa
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.327-331
    • /
    • 2001
  • The Pohang Neutron Facility based on an electron linac was constructed in order to construct the infrastructure for nuclear data production in Korea. It consists of a 100-MeV electron linac, a water-cooled Ta target, and an 11-m time-of-flight path. We measured the time-of-flight path length, the neutron energy spectra for different water levels inside the moderator, and the neutron total cross sections of polyethylene and copper by the transmission method.

  • PDF

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

DEVS-based Digital Twin Simulation Environment Modeling for Alternative Route Selection in Emergency Situations of Unnamed Aerial Vehicles (무인비행체의 유사시 대안 경로 선택을 위한 DEVS 기반 디지털 트윈 시뮬레이션 환경 모델링)

  • Kwon, Bo Seung;Jung, Sang Won;Noh, Young Dan;Lee, Jong Sik;Han, Young Shin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1007-1021
    • /
    • 2022
  • Autonomous driving of unmanned aerial vehicles may have to pay expensive cost to create and switch new routes if unexpected obstacles exist or local map updates occured by the control system due to incorrect route information. Integrating digital twins into the path-following process requires more computing resources to quickly switch the wrong path to an alternative path, but it can quickly update the path during flight. In this study, we design a DEVS-based simulation environment which can modify optimized paths through short-term simulation of multi-virtual UAVs for applying digital twin concepts to path follow. Through simulation, we confirmed the possibility of increasing the mission stability of UAV.

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

[Retracted]Design and Implementation of Optimized Profile through analysis of Navigation Data Analysis of Unmanned Aerial Vehicle ([논문철회]무인비행기의 항행 데이터 분석을 통한 최적화된 프로파일 설계 및 구현)

  • Lee, Won Jin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.237-246
    • /
    • 2022
  • Among the technologies of the 4th industrial revolution, drones that have grown rapidly and are being used in various industries can be operated by the pilot directly or can be operated automatically through programming. In order to be controlled by a pilot or to operate automatically, it is essential to predict and analyze the optimal path for the drone to move without obstacles. In this paper, after securing and analyzing the pilot training dataset through the unmanned aerial vehicle piloting training platform designed through prior research, the profile of the dataset that should be preceded to search and derive the optimal route of the unmanned aerial vehicle was designed. The drone pilot training data includes the speed, movement distance, and angle of the drone, and the data set is visualized to unify the properties showing the same pattern into one and preprocess the properties showing the outliers. It is expected that the proposed big data-based profile can be used to predict and analyze the optimal movement path of an unmanned aerial vehicle.

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Experimental Study on Estimation of Flight Trajectory Using Ground Reflection and Comparison of Spectrogram and Cepstrogram Methods (지면 반사효과를 이용한 비행 궤적 추정에 대한 실험적 연구와 스펙트로그램 및 캡스트로그램 방법 비교)

  • Jung, Ookjin;Go, Yeong-Ju;Lee, Jaehyung;Choi, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • A methodology is proposed to estimate a trajectory of a flying target and its velocity using the time and frequency analysis of the acoustic signal. The measurement of sound emitted from a flying acoustic source with a microphone above a ground shall receive both direct and ground-reflected sound waves. For certain frequency contents, the destructive interference happens in received signal waveform reflected path lengths are in multiple integers of direct path length. This phenomenon is referred to as the acoustical mirror effect and it can be observed in a spectrogram plot. The spectrogram of acoustic measurement for a flying vehicle measurement shows several orders of destructive interference curves. The first or second order of curve is used to find the best approximate path by using nonlinear least-square method. Simulated acoustic signal is generated for the condition of known geometric of a sensor and a source in flight. The estimation based on cepstrogram analysis provides more accurate estimate than spectrogram.