• 제목/요약/키워드: Flight operations functions

검색결과 14건 처리시간 0.024초

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권4호
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

항공 수송 임무의 기능 분석에 관한 연구 (Functional analysis of air transport mission)

  • 송윤섭
    • 한국항공운항학회지
    • /
    • 제16권4호
    • /
    • pp.41-48
    • /
    • 2008
  • Functional analysis of air transport mission is conducted to establish the performance requirements of the commercial transport designs. The analysis process begins by making a top-down analysis to the aircraft system level mission functions. Correctly interpreting the top-level performance requirements is the first step in designing and building an aircraft system. Each function and sub-function is allocated and examined to the aircraft level and flight operations phase to optimize the system performance and design requirements, such that these lower-level requirements can be traced back to the top-level requirements they are designed to fulfill. Special attention is given to making sure all interfaces, both internal and external, are addressed. The results are also in good resources of functional hazard assessment involved in certification processes.

  • PDF

선형근사 기법을 이용한 단일비행구간의 좌석할당 모형 (Seat Allocation Model for Single Flight-leg using Linear Approximation Technique)

  • 송윤숙;이휘영
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.65-75
    • /
    • 2008
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

  • PDF

An Airline Scheduling Model and Solution Algorithms

  • AL-Sultan, Ahmed Thanyan;Ishioka, Fumio;Kurihara, Koji
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.257-266
    • /
    • 2011
  • The rapid development of airlines, has made airports busier and more complicated. The assignment of scheduled to available gates is a major issue for daily airline operations. We consider the over-constrained airport gate assignment problem(AGAP) where the number of flights exceeds the number of available gates, and where the objectives are to minimize the number of ungated flights and the total walking distance or connection times. The procedures used in this project are to create a mathematical model formulation to identify decision variables to identify, constraints and objective functions. In addition, we will consider in the AGAP the size of each gate in the terminal and also the towing process for the aircraft. We will use a greedy algorithm to solve the problem. The greedy algorithm minimizes ungated flights while providing initial feasible solutions that allow flexibility in seeking good solutions, especially in case when flight schedules are dense in time. Experiments conducts give good results.

발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증 (Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations)

  • 이병선;김인준;이수전;황유라;정원찬;김재훈;김해연;이훈희;이상철;조영민;김방엽
    • 한국위성정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.37-44
    • /
    • 2011
  • 2010년 6월 26일에 발사된 통신해양기상위성(천리안)은 Ka-대역 위성통신, 정지궤도 해양관측, 그리고 기상관측을 위한 탑재체를 가지고 있다. 정지궤도상의 위성을 효과적으로 운용하기 위해서 위성 임무운영 개념을 정립하여 이를 위성관제시스템의 개발 초기 단계부터 적용하였다. 천리안 위성의 임무운영은 일별, 주별, 월별 그리고 계절별 운영으로 구분된다. 위성의 일별운영은 임무계획, 명령계획 및 전송, 원격측정 데이터 처리 및 분석, 위성 거리측정 및 궤도결정, 위성의 궤도 및 이벤트 예측, 그리고 휠 오프로딩 파라미터 계산으로 구분된다. 위성의 주별 운영으로는 화요일에 남북방향 위치유지조정, 목요일에 동서방향 위치유지조정으로 구분된다. 월별운영으로는 위성의 온보드 오실레이터를 갱신하기 위한 비행역학 파라미터 계산과 위성으로의 전송이 수행되며 계절별 운영으로 봄과 가을에는 지구가 태양을 가리는 식에 관련된 위성운영을 수행한다. 이 논문에서는 통신해양기상위성이 발사된 후 약 3개월에 걸친 궤도 내 시험 기간 중에 이루어진 위성관제시스템의 주요 기능들에 대한 운영검증을 기술한다. 이 기간 중에 위성관제시스템의 대부분 기능이 성공적으로 검증되었으며 천리안 위성관제시스템은 위성의 설계 수명기간인 7년 또는 위성이 수명을 다하는 그 이후까지 계속 사용될 예정이다.

Design and Development of an Advanced Real-Time Satellite Simulator

  • Kang, Ja-Young;Kim, Jae-Moung;Chung, Seon-Jong
    • ETRI Journal
    • /
    • 제17권3호
    • /
    • pp.1-16
    • /
    • 1995
  • An advanced real-time satellite simulator (ARTSS) has been developed to support the ground operations activities of the ETRI satellite control system, such as testing of the system facilities, validation of flight control procedures, verification of satellite commands as well as training of the ground operators. The design of ARTSS is based on the top-down approach and makes use of a modular programming to ensure flexibility in modification and expansion of the system. Graphics-based monitoring and control facilities enhance the satellite simulation environment. The software spacecraft model in ARTSS simulates the characteristics of a geostationary communication satellite using a momentum bias three-axis stabilization control technique. The system can be also interfaced with a hardware payload subsystem such as Ku-band communication transponder to enhance the simulator capability. Therefore, ARTSS is a high fidelity satellite simulation tool that can be used on low-cost desk top computers. In this paper, we describe the design features, the simulation models and the real-time operating functions of the simulator.

  • PDF

선형근사 기법을 이용한 단일비행구간의 좌석할당 모형 (Seat Allocation Model for Single Flight-leg using Linear Approximation Technique)

  • 송윤숙;이휘영;윤문길
    • 경영과학
    • /
    • 제26권3호
    • /
    • pp.117-131
    • /
    • 2009
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

우주발사체 개발사업에서 신뢰성공학의 시스템엔지니어링 인터페이스 (System Engineering Interfaces of Reliability Engineering in Development of Launch Vehicle)

  • 신명호;조상연;조미옥
    • 시스템엔지니어링학술지
    • /
    • 제2권1호
    • /
    • pp.31-36
    • /
    • 2006
  • Development of launch vehicle needs a large-scale and complicated System Engineering discipline interfacing to small-quantity production with special manufacturing processes. In general, the System Engineering discipline of launch vehicle has its relationship with Production, Operations, Product Assurance and Management disciplines and its internal partitions into the functions of System Engineering Integration & Control, Requirements Engineering, Analysis, Design and Configuration and Verification. As a function of Product Assurance, reliability of launch vehicle plays an significant role in risk management, system safety, flight safety and launch certification through design assurance. Moreover, major functions of systems engineering are integrated by means of reliability in the phases of design and verification. Therefore, derailed identification of system engineering interfaces of reliability, and execution of tasks for reliability assurance is required for successful development of launch vehicle. This paper identifies specific pattern and mechanism of the interfaces between reliability and system engineering.

  • PDF

위성비행소프트웨어를 위한 XtratuM 가상화 기반의 RTEMS SMP 플랫폼 (Development of RTEMS SMP Platform Based on XtratuM Virtualization Environment for Satellite Flight Software)

  • 김선욱;최종욱;정재엽;유범수
    • 한국항공우주학회지
    • /
    • 제48권6호
    • /
    • pp.467-478
    • /
    • 2020
  • 위성비행소프트웨어의 역할이 커짐에 따라 가상화 기술이 위성에도 도입되고 있다. 가상화 기술 중 하나인 하이퍼바이져는 하드웨어 자원의 가상화를 통해 하드웨어를 보다 효율적으로 쓸 수 있도록 도와준다. 동시에 가상화 기술은 소프트웨어의 복잡도를 낮추어 신뢰성을 높이는 역할도 수행한다. 한국항공우주연구원에서는 위성용 하이퍼바이져 중 하나인 XtratuM을 차세대 하이퍼바이져 후보군으로 선정하고, 이를 위성비행소프트웨어에 적용할 수 있는지 가능성을 확인하고 있다. XtratuM은 하드웨어 효율성을 높일 수 있지만 SMP를 지원하지 않아 인공위성의 자세제어 알고리즘과 같이 고성능/병렬처리가 필요한 부분에 적용이 어렵다는 한계점을 지니고 있다. 본 논문에서는 XtratuM의 기능 확장과 RTEMS XM-SMP BSP를 추가적으로 구현하여 RTEMS 기반 SMP를 지원하도록 만든다. XtratuM을 분석하여 SMP에 필요한 기능을 하이퍼콜로 추가한다. 그 후 BSP를 수정하여 SMP에 필요한 다수의 프로세서를 초기화하는 과정과 프로세서간의 통신을 위한 초기화 과정을 구현한다. 나아가 문맥 교환, 인터럽트와 같이 SMP에 의한 충돌이 발생할 수 있는 부분에 대해서도 개선한다. 이렇게 개발한 RTEMS XM-SMP는 4개의 코어를 가지고 있는 GR740 보드를 이용하여 SMP 벤치마크 함수를 수행하여 검증하고 SMP를 통한 성능 변화를 확인한다.

Evaluating High-Degree-and-Order Gravitational Harmonics and its Application to the State Predictions of a Lunar Orbiting Satellite

  • Song, Young-Joo;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.247-256
    • /
    • 2015
  • In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.