• Title/Summary/Keyword: Flight control computer

Search Result 186, Processing Time 0.03 seconds

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

A Study on the Real-Time Parameter Estimation of DURUMI-II for Control Surface Fault Using Flight Test Data (Longitudinal Motion)

  • Park, Wook-Je;Kim, Eung-Tai;Song, Yong-Kyu;Ko, Bong-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.410-418
    • /
    • 2007
  • For the purpose of fault detection of the primary control surface, real-time estimation of the longitudinal stability and control derivatives of the DURUMI-II using the flight data is considered in this paper. The DURUM-II, a research UAV developed by KARI, is designed to have split control surfaces for the redundancy and to guarantee safety during the fault mode flight test. For fault mode analysis, the right elevator was deliberately fixed to the specified deflection condition. This study also mentions how to implement the multi-step control input efficiently, and how to switch between the normal mode and the fault mode during the flight test. As a realtime parameter estimation technique, Fourier transform regression method was used and the estimated data was compared with the results of the analytical method and the other available method. The aerodynamic derivatives estimated from the normal mode flight data and the fault mode data are compared and the possibility to detect the elevator fault by monitoring the control derivative estimated in real time by the computer onboard was discussed.

A Real time Simulation for Performance Analysis of Flight Control System (비행체 제어장치의 성능 해석을 위한 실시간 시뮬레이션)

  • 곽병철;박양배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.458-464
    • /
    • 1986
  • This paper introduces a method for design verification and performance evaluation of flight control system. The method is a real time hardware in the loop simulation using the hybrid computer and motion table facility. As a typical illustration, a roll control system of flight vehicle is applied. The simulation validity is demonstrated by comparing hardware test results with analog simulation results.

  • PDF

A Real Time HILS of the Guidance Flight System (시선지령 유도 비행체의 실시간 실물 시뮬레이션 기법)

  • 김영주;이종하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.638-647
    • /
    • 1994
  • This paper describes the real time Hardware-In-the Loop Simulation(HILS) that is an efective tool for design, testing and performance evaluation of the guidanc eflight system. The real time HILS was performed by using a 3-axis flight motion simulator, real time computer, I/O system and flight control system hardware along with the assumed flight trajectory of the guidance flight system. Also, we proved the validity of the real time HILS is the guidance flight system by comparing its simulation results with the software simulation data and telemetry data.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

Experimental Evaluation of Unmanned Aerial Vehicle System Software Based on the TMO Model

  • Park, Han-Sol;Kim, Doo-Hyun;Kim, Jung-Guk;Chang, Chun-Hyon
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.357-374
    • /
    • 2008
  • Over the past few decades, a considerable number of studies have been conducted on the technologies to build an UAV (Unmanned Aerial Vehicle) control system. Today, focus in research has moved from a standalone control system towards a network-centric control system for multiple UAV systems. Enabling the design of such complex systems in easily understandable forms that are amenable to rigorous analysis is a highly desirable goal. In this paper, we discuss our experimental evaluation of the Time-triggered Message-triggered Object (TMO) structuring scheme in the design of the UAV control system. The TMO scheme enables high-level structuring together with design-time guaranteeing of accurate timings of various critical control actions with significantly smaller efforts than those required when using lower-level structuring schemes based on direct programming of threads, UDP invocations, etc. Our system was validated by use of environment simulator developed based on an open source flight simulator named FlightGear. The TMO-structured UAV control software running on a small computing platform was easily connected to a simulator of the surroundings of the control system, i.e., the rest of the UAV and the flight environment. Positive experiences in both the TMO-structured design and the validation are discussed along with potentials for future expansion in this paper.

Development and Flight Result of Inertial Navigation System for KSR-III Rocket (KSR-III 로켓의 관성항법시스템 개발과 비행시험 결과)

  • 노웅래;조현철;안재명;박정주;최형돈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-565
    • /
    • 2004
  • The Korean space program was marked by the successful launching of a KSR-III liquid propelled sounding rocket. The Inertial Navigation System (INS) which carries out critical mission functions of navigation, guidance and control was domestically developed and perfectly certified through the flight test. The system consists of a strapdown inertial measurement, an onboard computer and flight software. This paper will describes the development works of the inertial navigation system, including top level system design, hardware and software. And it summarizes flight results.

A UAV Flight Control Algorithm for Improving Flight Safety (무인항공기 비행제어컴퓨터 알고리즘 개발을 통한 비행안전성 향상)

  • Park, Suncheol;Jung, Sungrok;Chung, Myungjin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.559-565
    • /
    • 2017
  • A UAV(unmanned aerial vehicle) requires higher reliability for external effects such as electromagnetic interference because a UAV is operated by pre-designed programs that are not under human control. The design of a small UAV with a complete resistance against the external effects, however, is difficult because of its weight and size limitation. In this circumstance, a conventional small UAV dropped to the ground when an external effect caused the rebooting of the flight-control computer(FCC); therefore, this paper presents a novel algorithm for the improvement of the flight safety of a small UAV. The proposed algorithm consists of three steps. The first step comprises the calibration of the navigation equipment and validation of the calibrated data. The second step is the storage of the calibration data from the UAV take-off. The third step is the restoration of the calibration data when the UAV is in flight and FCC has been rebooted. The experiment results show that the flight-control system can be safely operated upon the rebooting of the FCC.

Development of Avionics System for the 200 kg-class Tiltrotor UAV (200 kg급 틸트로터 무인기의 항공전자시스템 개발)

  • Chang, Sungho;Cho, Am;Park, Bumjin;Choi, Seongwook
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.65-69
    • /
    • 2013
  • Avionics system designed for the 200 kg-class tiltrotor UAV has been developed. Avionics system for the UAV is the reconstruct system and can be programmed automation controller. This paper focuses on the design aspects of the hardware and presents the ground and flight test results. The hardware aspects of the avionics system include details about the hardware configurations for the interfaces with the Digital Flight Control Computer, sensors and Line-replaceable unit modifications.

Longitudinal Flight Control of a Transport Aircraft Using Thrust Only

  • Ochi, Y.;Kanai, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.3-148
    • /
    • 2001
  • This paper deals with a problem of decreasing the airspeed and the altitude of a transport aircraft using thrust only. Such a situation can occur, if the aircraft loses all hydraulic power that drives the control surfaces. A controller for flight path angle control is designed using the model following servo control method, which is a PI-type optimal regulator. For computer simulation, a simulation model that covers a range of flight envelope is made using given linear models and trim points at some flight conditions. Nondimensional aerodynamic coefficients, derivatives and trim points that are not at the given trim points are computed by linear interpolation. The model is effective in simulation where the trim point varies. Simulation using ...

  • PDF