• Title/Summary/Keyword: Flight control

Search Result 1,417, Processing Time 0.022 seconds

An Approach to Linguistic Instruction Based Learning and Its Application to Helicopter Flight Control

  • M.Sugeno;Park, G.K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1082-1085
    • /
    • 1993
  • In this paper, we notice the fact that a human learning process is characterized by a process under a natural language environment, and discuss an approach of learning based on indirect linguistic instructions. An instruction is interpreted through some meaning elements and each trend. Fuzzy evaluation rule are constructed for the searched meaning elements of the given instruction, and the performance of a system to be learned is improved by the evaluation rules. In this paper, we propose a framework of learning based on indirect linguistic instruction based learning using fuzzy theory: FULLINS(FUzzy-Learning based on Linguistic IN-Struction). The validity of FULLINS is shown by applying it to helicopter flight control.

  • PDF

HILS Test for the Small Aircraft Autopilot (소형항공기용 Autopilot HILS 시험)

  • Lee, Jang-Ho;Kim, Eung-Tai;Seong, Ki-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Recently, autopilot is essential to reduce pilot's workload and increase flight safety. Avionics system of the small aircraft also has progressively adopted centralized multi-processor and multi-process computing architectures similar to the integrated modular avionics of B-777. It is increased more and more that importance of the flight control system. In this paper, the performance of the autopilot for the small aircraft has been verified with Hardware-In-the-Loop Simulation(HILS). Also, the autopilot algorithm that is operated in the Flight Control Computer(FCC) for the Fly by Wire(FBW) was verified with PILS and compared with the HILS results for the several commercial autopilots.

  • PDF

Guidance Law of Missiles for Control Impact-Time-and-Angle by Flight Path Angle in Three Dimensional Space (3차원 공간에서의 비행 경로각을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Jin, Sheng-Hao;Lee, Chun-Gi;Yang, Bin;Hwan, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • This paper on the assumption that the target is stationary and the velocity of missile is fixed value. In three dimensional space. Using flight path angle to simultaneous control impact-time-and-angle base on a homing guidance law. The independent variable in the nonlinear engagement model is the flight path angle of the missile. The propose homing guidance law can see the controllability of impact-time-and-angle. And also can see the processing of the missile arrive at the target. It is applied to several salvo attack scenarios. The performance of the proposed guidance law is verified by simulations.

GUI S/W Development for Helicopter Simulation (헬리콥터 시뮬레이션용 GUI S/W 개발)

  • Park,Sang-Seon;Lee,Sang-Gi;Lee,Hwan;Ju,Gwang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.88-93
    • /
    • 2003
  • This Paper described the simulation program development for helicopter. In the design of flight control system to accomplish some special missions like UAV, it is important to minimize the execution time obtaining a linear model from nonlinear model that is used for design of controller. The first step for this kind of purpose is to complete a nonlinear model that contains full dynamic characteristics. The second step is to get the trim values that are obtained from the nonlinear model by solving an algebraic equation. And then stability and control derivatives are derived through hovering to forward flight by numerical perturbation that will be used for linear model for a specified flight condition. The software program(HeliSim) is developed by using MATLAB GUI and will provide easy modeling procedure. The suggested method in this paper is much more simpler than any other method like a fully scale helicopter model. The advantage of our suggested method will reduce the computational time due to simple formula to extract a linear model from nonlinear model that will be beneficially used for flight control system of unmanned helicopter by some reduction of computational load.

Helicopter FBW Flight Control Law Design for the Handling Quality Performance (비행조종성능을 위한 헬리콥터 FBW 비행제어법칙 설계)

  • Choi, In-Ho;Kim, Eung-Tai;Hyun, Jung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1561-1567
    • /
    • 2013
  • This paper is regarding the helicopter flight control law design for the handling quality performance. MIL-F-83300 and ADS-33E specification is used of the helicopter flight handling quality and to meet these requirements, ACAH type controller is required. This paper described the ACAH type controller design and performance evaluations. Helicopter dynamics first developed as nonlinear dynamics including rotor dynamics and then linear model was extracted from hovering to forward flight mode using trim condition. Control law used the model following to meet the handling qualities, the simple inverse model as feed forward gain, decoupling logic and phase model to decouple the axes, and linear model to calculate the coefficients. Handling quality evaluation used the matlab based Conduit tool and verified that Level 1 requirement is satisfied.

Development of Embedded Program for UAV Flight Control System using RTOS and Model-Based Auto Code Generation (모델기반 자동코드 생성과 실시간 운영체제 기반 무인기용 비행제어시스템 탑재 프로그램 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.979-986
    • /
    • 2011
  • In this paper, an embedded program of a flight control system for a small high performance UAV is introduced. The program consists of modules for device management and guidance and control. The device management system handles navigation sensors and mission equipments. The program for the guidance and control system is used to accomplish various kinds of missions and realize automation of flight control. Driver programs embedded in the device management system for operation of sensors and external devices are based on Texas Instrument's DSP/BIOS RTOS(realtime operating system). The on-board programs for the guidance and control system is obtained by using the model-based auto code generation technology.

Research on the Design and Evaluation of a Control Loading System for Flight Simulator (비행 시뮬레이터용 조종력 재현 장치 설계 및 시험연구)

  • Lee, Chan-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.95-100
    • /
    • 2004
  • This paper represents the development of a CLS(Control Loading System) for a target a airplane (KT-1) with mechanical linkage reversible flight control system. The system is composed of mechanical frame, controller, sensing part to measure the force from the stick, driving system generating the reaction forces. The DS1103 DSP(Digital Signal Processor) of the dSpace Corp. was used as the controller. The control algorithm of the CLS and the operational environment including monitoring software and evaluation tools are described. The evaluation of the system was conducted according to the requirement specification. The results of the test were analyzed by comparing with the actual data of the target airplane.

A Study on Prevention Control Law of Aircraft Departure at High Angle of Attack (고받음각에서 항공기 이탈 방지를 위한 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Jung, Dae-Hee;Kim, Seung-Jun;Bae, Myung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.85-91
    • /
    • 2005
  • Supersonic jet fighter aircraft must have been guaranteed appropriate for controllability and stability in HAoA(High Angle of Attack) region. Limit value of aircraft enter the deep stall at HAoA is related to problem of aircraft configuration design. But, In order to guarantee the aircraft safety in HAoA, control law is designed using digital Fly-By-Wire flight control system in modern versions of supersonic jet fighter aircraft. Also, In order to recovery if aircraft enter the deep stall or spin, anti-spin control law and MPO(Manual Pitch Override) mode is designed. AoA limiter and MPO is designed in longitudinal axis and HAoA departure prevention logic, roll command limiter, rudder fader and anti-spin logic is designed in lateral-directional axis. In this paper, we introduce the T-50 HAoA flight control law and propose that aircraft stability and adequate of these control law from HAoA flight test.

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

A Proposal on the Aviation Rules of the Military UAV in the National Airspace System (국가공역체계 내에서 군용 무인항공기 비행규칙에 관한 제언)

  • Park, Wontae;Lee, Kangseok;Im, Kwanghyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2014
  • Military UAV(Unmanned Aerial Vehicle) operated as a RC(Remotely Control) model level within the limit of the military special use airspace until now. However, the high and medium altitude of URA(Unmanned Reconnaissance Aircraft) which the ROKAF have been trying to import recently is at the UAV level and needs the criteria for the classified airspace flights. The required flight criteria includes operator location, mission operation limit, equipment, etc., which are the principle and standard applied based on the airspace use for UAV. Also, the general flight rules, visual flight rules, instrument flight rules are required in order to have to be applied to the actual flight. Besides, an appliance regulation needs to be arranged regarding two-way communication, ATC and communication issue, airspace and area in-flight between UAS( Unmanned Aircraft System) users. An operation of the UAV in the air significantly requires the guarantee of the aircraft's capacity, and also the standardized flight criteria. A safe and smooth use is ensured only if this criteria is applied and understood by the entire airspace users. For the purpose, a standardized military UAV flight operations criteria that is to be applied for each airspace by UAV is to be prepared through analysis of the present state, a legend UAV system, and a special character analysis.