• Title/Summary/Keyword: Flight accident

Search Result 115, Processing Time 0.032 seconds

A Study on the Necessity of Weather Information for Low Altitude Aircraft (저고도 운용 항공기를 위한 기상정보의 필요성에 관한 연구)

  • Cho, Young-Jin;Kim, Su-Ro
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.45-58
    • /
    • 2020
  • According to the Ministry of Land, Infrastructure and Transport press release ('18.12.21.) The amendment of the Aviation Business Act will reduce the capital requirements for aviation leisure operators and make it easier to enter aviation leisure businesses by improving regulations on small air transportation business. In addition, as the scale of the UAV(Unmanned Aerial Vehicle) sector is expected to increase globally, the dramatic increase in low altitude operating aircraft, including this, must be taken into account. The low altitude aircraft category is divided into small airplanes, helicopters, light aircrafts and ultra-light aircrafts, and instructors include school instructor pilots and student pilots, military and national helicopter pilots, and aviation leisure operators. In case of low altitude aircraft, there are cases of canceling operations due to low visibility and low clouds, and aircraft accidents due to excessive operation and sudden weather phenomenon. Therefore, in order to prevent low-altitude aircraft accidents, a safe flight plan based on weather conditions and weather forecasts and more accurate and local weather forecasts and weather forecast data are needed to prepare for the rapidly changing weather conditions.

The Study on Common Factors of Typical CFIT Accident with Go-around Failure and Go-around Gate Operation of Foreign Carriers (An Analysis of Korean CFIT Accidents through TEM) (복행실패로 발생한 CFIT사고의 공통요인 및 외항사 복행게이트 운영 실태에 대한 연구 (한국 대표적 CFIT사고의 TEM 분석을 중심으로))

  • Choi, Jin-Kook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.15-23
    • /
    • 2014
  • There have been CFIT(Controlled Flight Into Terrain) accidents that can be prevented if the crew executed go-around. This study is to analyse the common factors of three typical CFIT accidents of Korea in TEM(threat and error management) frame, and the examples of go-around gate and the countermeasures of eight airlines through the survey facilitating go-around to prevent CFIT. The common factors found in three typical CFIT accidents occurred in Korea or by Korean carriers turned out to be in mountainous terrain, in bad weather while in non-precision approach or circling approach by captain as PF(Pilot Flying) when crew make monitoring errors and communication errors. It also turned out that the crew in all three typical tragic CFIT accidents did not execute go-around in unstabilized approaches. The captains did not respond immediately when first officers advised them to go-around until it is too late. Seven out of eight Airlines answered that they use stabilized approach height as 1,000 feet to be stabilized earlier to have more safety margin by enhancing go-around gate regardless of the weather to prevent CFIT in the survey.

A Study on Human Error Risk Analysis of Helicopter Frequent Accidents through AHP Method (AHP 방법을 통한 헬리콥터 다빈도 사고의인적오류 위험도 분석에 관한 연구)

  • TaeJung Yu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.46-54
    • /
    • 2023
  • Helicopter pilots are required to perform many visual workloads in topographical avoidance, flight path modification and navigation, because helicopters operate at very low altitudes. The helicopter-specific instability also require the pilot to have precise perception and control. This has caused frequent human error in helicopter accidents. In Korea, two to three cases have occurred annually on average over the past 10 years, and this trend has not decreased. The purpose of this study was to identify human error risks in advance to prevent helicopter accidents and to help develop measures for missions and mission phases with high risk of human error. Through the study, the tasks and mission phases where accidents occur frequently were classified and the risk of human error was calculated for each mission phases. To this end, the task of frequent accidents during helicopter missions was first identified, detailed steps were classified, and the number of accidents was analyzed. Next, the AHP survey program was developed to measure the pilot's risk of human error and the survey was conducted on the pilots. Finally, the risk of human error by helicopter mission and by mission phases calculated and compared with the actual number of accidents.

The Legal Study of Prohibited Items on Aeroplane for the Aircraft Safety and Security (항공안전보장.질서유지를 위한 항공기반입금지 물품 관리.감독에 관한 입법적 개선방안)

  • Chang, In-Ho
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.33-66
    • /
    • 2014
  • While the numbers of overseas travelers has been increased rapidly each year, the numbers of passengers in the aircraft also has continued to be increased gradually. In the mist of these increasing numbers, such accidents as threatening an aircraft safety like riot, aircraft hijacking and terrorism have happened constantly. In these circumstances, South Korean government has prescribed "Aviation on Security Act" in accordance with the Convention on International Civil Aviation and other international agreements. This act aims to prevent illegal activities and illegal items on the aircraft to ensure the safety and security of civil aviation. However, this act is not sufficiently regulating all the illegal crimes and illegal items on the flight. For the worse, there is a lack of effective supervisory capacity. Likewise, the inherent problems of the current laws relating to the prevention of the illegal items on the aircraft are appearing on the surface continually. Above all, illegal items on the aircraft are directly connected to the issue of aviation safety and security as well as a safe utilization of the flight service. Thus, when there occurs a serious accident on board, it surely would be led to a huge economic loss not mentioning the loss of lives following the accident. Therefore safety of the flight passengers cannot be guaranteed without ensuring the safety of aircraft facilities and good supervisory mechanism of illegal items on the aircraft. Accordingly, establishing a safe operation order tends to influence economy and tourism of a country in no small measure. Therefore, it is an urgent issue to settle down a reasonable and adequate supervisory regulations regarding the prevention of the illegal items on the aircraft. Consequently, in this article, I studied on a reasonal and effective mechanism to control the prevention of the illegal items and illegal acts on the aircraft in order to ensure a safety and security of civil aircraft.

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.

Design and Verification of Housing and Memory Board for Downsizing for Crash Protected Memory Module (충돌보호메모리모듈의 소형화를 위한 하우징 및 메모리 보드 설계와 검증)

  • Kim, Jun-Hyoung;Kim, Jung-Pil;Kim, Jeong-Yeol;Kim, Tae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Flight data recorder is a equipment that records data required for investigation of aircraft accidents and should be developed in compliance with the ED-112A standard. Unlike general data storage device, flight data recorder must be able to recover data after an aircraft accident, requiring a housing and a memory board to protect data in extreme environments. To attain this performance, we designed a housing that can withstand the test by analyzing the physical environment of the impact, shear/tensile, penetration resistance and static crush test of the crash survival test and minimized the size and weight compared to the existing one in consideration of the installation of the aircraft in this paper. Insulation material and thermal block material were applied to endure high and low temperature fire so that the internal temperature does not rise above 150℃ even in 260℃, 10 hour environment. In addition, the memory board is designed to minimize the size and we devise a hoping programming method to prevent continuous data loss of more than 16 seconds. Through this, Crash protected memory module that satisfies ED-112A was completed.

Study on relationship between the Wirecutter Length and the Control Input of Rotorcraft (회전익 항공기의 전선절단기 길이와 조종입력의 상호관계 연구)

  • Kim, Young-Jin;Lee, Seung-Jae;Chang, In-ki;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.46-53
    • /
    • 2017
  • This paper shows a length of wirecutter using an analysis based on Rotorcraft's control input and taxiing speed. In case of selecting an inappropriate length of wirecutter which applies to rotorcraft for safety, this causes a collision between blade and wirecuter, or an accident by wire. We review the control input which was used in development stage, and establish the conditions of control input which are needed in taxiing. Based on these conditions, we review the collision possibility between blade and wirecutter through analysis in case of 20, 40, 60 kts taxiing speed. Following, this result is verified by comparison with that of a simulation test in rotorcarft. Finally, in case of high collision possibility, we presented the downsize length to avoid the collision and increment of non-protective area in flight, simultaneously.

The Lightning Effects on Aircraft and Certification (항공기에 대한 낙뢰의 영향과 감항성 인증)

  • Han,Sang-Ho;Lee,Jong-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.110-120
    • /
    • 2003
  • As the wooden aircraft in the early times has no way to let lightning flow when lighting flash attaches during flight, the aircraft got damage, or caught fire. Though all metal airplane was developed with an advent of aluminum, a lightning accident still occurred including a fire of a fuel tanks. Eventually, NACA declared problems in 1938, and an artificial lightning test began. III succession, FAA established Airworthiness Requirements for certification. The FAA committed test measures study for the protection of an airplane from lightning to SAE. SAE presented the test current and voltage waveforms that simulating natural lightning, and it is utilized on lightning protection certification of an airplane by public. A lightning effects of an airplane through an analysis of lightning mechanism was made in this technical note. Especially, lightning direct effects on aircraft are analyzed and lightning strike zones are described.

Fail safe and restructurable flight control system

  • Kanai, K.;Ochi, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.21-29
    • /
    • 1994
  • This paper presents a method to accommodate failures that affect aircraft dynamical characteristics, especially control surface jams on a large transport aircraft. The approach is to use the slow effectors, such as the stabilators or engines, in the feedforward manner. The simulation results indicate the performance of the RFCS. In some cases of control surface jam, the aircraft cannot recover without using the stabilators. Although the inputs to the slow effectors are determined using the nominal parameters, the effects of parameter change can be compensated by adjusting the control parameters for the fast surfaces. In the case of rudder jam, if the remaining control surfaces and the differential thrust cancel the moments produced by the stuck rudder, using the engine control improves time responses and reduces deflection angles of the control surfaces. If not, however, the aircraft starts a large rolling motion following a yawing motion. In that case, the stabilators should be used to damp the induced rolliig motion, instead of trying to directly cancel the moments caused by the stuck rudder. Unfortunately, the proposed control law for the stabilators does not give such inputs, because it does not take into account the dynamical effects which stuck surfaces have on the aircraft motions. However, we have shown through simulation that the aircraft can be recovered by giving the stabilators the control inputs that counteract the induced rolling moment. Besides, the method has also been shown through simulation to be effective in maintaining control during a situation similar to an actual accident. Finally let us mention a problem with the RFCS. As stated above, we have not established a method to select a trim point which call be reached as easily as possible using the remaining control effectors. In fact, recovery performance considerably depends on the trim states. As pointed out in Ref. 11, finding the best trim point for impaired aircraft will be one of the most difficult questions in RFCS design.

  • PDF

Rare Imaging of Fat Embolism Seen on Computed Tomography in the Common Iliac Vein after Polytrauma

  • Lee, Hojun;Moon, Jonghwan;Kwon, Junsik;Lee, John Cook-Jong
    • Journal of Trauma and Injury
    • /
    • v.31 no.2
    • /
    • pp.103-106
    • /
    • 2018
  • Fat embolism refers to the presence of fat droplets within the peripheral and lung microcirculation with or without clinical sequelae. However, early diagnosis of fat embolism is very difficult because the embolism usually does not show at the computed tomography as a large fat complex within vessels. Forty-eight-year-old male with pedestrian traffic accident ransferred from a local hospital by helicopter to the regional trauma center by two flight surgeons on board. At the rendezvous point, he had suffered with dyspnea without any airway obstruction sign with 90% of oxygen saturation from pulse oximetry with giving 15 L of oxygen by a reserve bag mask. The patient was intubated at the rendezvous point. The secondary survey of the patient revealed multiple pelvic bone fracture with sacrum fracture, right femur shaft fracture and right tibia head fracture. Abdominal computed tomography was performed in 191 minutes after the injury and fat embolism with Hounsfield unit of -86 in his right common iliac vein was identified. Here is a very rare case that mass of fat embolism was shown within common iliac vein detected in computed tomography. Early detection of the fat embolus and early stabilization of the fractures are essential to the prevention of sequelae such as cerebral fat embolism.