• 제목/요약/키워드: Flight Trajectory

검색결과 239건 처리시간 0.029초

CFD를 이용한 로켓 공력가열 온도 예측 (AERODYNAMIC HEATING TEMPERATURE OF SOUNDING ROCKET USING CFD)

  • 김성룡;김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.89-92
    • /
    • 2006
  • Aerodynamic heating temperature shown in a NASA's sounding rocket test data was reproduced with CFD technique, comparing with those with analytical method CFD made heat transfer rates and recovery temperatures as the flight trajectory, which made it possible to calculate the wall temperature of rocket. The predicted wall temperature was compared with analytically predicted temperatures. Both the temperatures were compatible although their recovery temperature and heat transfer rates are a little different.

  • PDF

FAA의 차세대 항공운항(NexGen) 동향 (A Study on the Trends of the FAA's NextGen)

  • 김유광
    • 항공우주시스템공학회지
    • /
    • 제6권3호
    • /
    • pp.19-23
    • /
    • 2012
  • "The FAA's Next Generation Air Transportation System" is a comprehensive overhaul of U.S National Airspace System to make air travel more convenient and dependable, while ensuring the flight is as safe, secure and hassle-free as possible. At its most basic level, NextGen represents an evolution from a ground-based system of air traffic control to a satellite-based system of air traffic management. This evolution is vital to meeting future demand, and to avoiding gridlock in the sky and at U.S airports. NextGen will open worldwide's skies to continued growth and increased safety while reducing aviation's environmental impact.

비평탄면에서의 4 족 로봇의 갤로핑 알고리즘 (Galloping Algorithm of Quadruped Robots on Irregular Surface)

  • 신창록;박종현;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

해상용 고사분수의 운동학적 특성 연구 (A Study on the Kinematic Characteristics of the Ocean High Elevation Fountain)

  • 이춘태
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.85-90
    • /
    • 2011
  • Recently, many high elevation fountain are constructed for the beauty of beach landscape. Typically, a fountain has several nozzles that shoots water upwards or at an angle into the air. But unfortunately, the weather and wind can cause the water soak nearby walkways and pedestrians. Therefore, in this study, a mathematical model of high elevation fountain is suggested to predict the actual travelling distance of water droplet by the wind. To simplify our treatment of the water flow and to avoid issues such as fluid dynamics and surface tension, we have adopted a particle model for the fountain water. The particles are assumed not to interact with each other, and do not deform during their flight through air.

Guidance Synthesis to Control Impact Angle and Time

  • Shin, Hyo-Sang;Lee, Jin-Ik;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.129-136
    • /
    • 2006
  • A new guidance synthesis for anti-ship missiles to control impact angle and impact time is proposed in this paper. The flight vehicle is assumed as a 1st order lag system to consider more practical system. The proposed guidance synthesis enhances the survivability of anti-ship missiles because multiple anti-ship missiles with the proposed synthesis can hit the target simultaneously. The control input to satisfy constraints of zero miss distance and impact angle, and the feedforward bias control input to control impact time constitute the guidance law. The former is from trajectory shaping guidance, the latter is from neural network. And particle swarm optimization method is introduced to furnish reference input and output for learning in neural network. The performance of the proposed synthesis in the accuracy of impact time and angle is validated by numerical examples.

Study on Safe Set and Maneuverability Envelope Protection during Arresting Landing

  • Liu, Zidong;Zhan, Hao;Wang, Shuang
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.73-78
    • /
    • 2015
  • According to the characteristic of carrier-based aircraft, the method of solving safe set during arresting landing is discussed in this paper based on optimal control and invariant set theory. The safe sets of carrier aircraft are evaluated in different states on the characteristic of longitudinal augmented system by using the level set method. Then, the influence on the boundary of safe set under various factors is analyzed. At last, the maneuverability envelope protection is established based on the corresponding theory, and the validity of the system is verified through simulation. The results demonstrate preliminarily that: compared with mass and thrust, the elevator is the greatest influence factor for the boundary of safe set; the dynamic trajectory of carrier-based aircraft can be located at the interior of safe set effectively with the maneuverability envelope protection.

고기동 항체의 위치추적용 GPS 중계기 설계/제작 (GPS Translator Design and Manufacturing for High Dynamic Vehicle)

  • 강설묵;이상정
    • 한국군사과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.39-48
    • /
    • 2003
  • A GPS translator system is used to get the precise and reliable trajectory data for the high dynamic test vehicles, such as missiles or artillery shells. The missile system with high dynamics, vibration and shock needs to determine its position and velocity in particular. The proposed GPS translator on the test vehicle receives GPS signals, amplifies, down-converts, digitally samples, BPSK modulates, up-converts them to S-band, and then retransmits them to the ground translator processing station. It has doppler variation and signal noise, so design method for resolving them is proposed. The performance of the translator is proved by environmental test and real flight test.

초음속 유도탄 동체와 날개의 공력가열 해석 (Aerodynamic Heating Analysis of Supersonic Missile Body and Fin)

  • 강경태
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.20-28
    • /
    • 2008
  • Missile operating at supersonic conditions experiences considerable high temperature environments that is caused by aerodynamic heating as a result of the temperature gradient through boundary layer that surrounds it. This is one of important problems to the designer due to temperature limitation of structural materials. Because prediction of aerodynamic heating on missile needs unsteady calculation according to a flight trajectory, approximate method approach is efficient at design stage. In this paper, improved aerodynamic heating analysis scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile body and fin. The prediction results are compared with measured data and MINIVER codes results.

드론을 이용한 항행안전시설 점검체계 개발 (Development of Inspection System for NAVAID Using Drone)

  • 이영길;주효근;권달원;박성훈
    • 한국항공운항학회지
    • /
    • 제26권4호
    • /
    • pp.110-115
    • /
    • 2018
  • This paper introduces Korea Airport Corporation's own research and development contents and plans for navigation aids check using drone which is actively research and developed mainly in advanced countries. The hardware, algorithm, operating program of the drone system, the drone flight trajectory setting, and real-time measurement results were analyzed and verified. By securing domestic technology for the latest technology utilizing drone, we plan to promote more thorough aviation safety and advanced technology in related field and commercialized it in domestic and overseas.

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.