• Title/Summary/Keyword: Flight Model

Search Result 1,074, Processing Time 0.026 seconds

Development of the Design Frame to Predict the Peak-G and Duration Time in Gas-Gun Tests (가스건 시험의 최대 감가속도와 유지시간 예측 설계 Frame 연구)

  • Hyunsoo Park;Minsup Song;Cheol Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 2024
  • The gas-gun test is a experimental approach employed to validate the operational or structural stability when subjected to the impact energy encountered during launch or target collision. Predicting the outcomes of the gas-gun test has traditionally relied on empirical knowledge, due to numerous factors such as the bird assembly's shape, weight, material, and flight velocity. However, due to the nonlinearity and complex interactions between these variables, numerous tests are necessary to identify the necessary requirements, resulting in significant expense and time consumption during the process. The objective of this study is to forecast the variations in impact energy in future tests by developing a numerical model and analysis that aligns with the test outcomes, utilizing the ABAQUS Explicit. The outcome of the numerical analysis produced a framework that anticipates the peak g and the duration of the actual gas-sun test results, throughout post-processing techniques using FFT and LPF filters.

Analysing the Impact of Service Quality on Brand Image and Brand Advocacy

  • Jungmin KIM;Soo-Kyoung LEE;Rihyun SHIN;Jin-Woo PARK
    • Journal of Distribution Science
    • /
    • v.22 no.4
    • /
    • pp.79-89
    • /
    • 2024
  • Purpose: This study aims to enhance airport service quality by examining their impact on brand image, advocacy, and mediating brand trust in the aviation service distribution sector. Research Design, Data, and Methodology: Using existing literature, we propose a structural model exploring the relationships between key components which are service quality, brand trust, brand Image and brand advocacy. An online survey, based on prior literature, was administered to 287 Koreans who have experienced using facilities or services at Incheon International Airport (IIA). Statistical analysis employed confirmatory factor analysis (CFA) and structural equation modelling (SEM). Results: Research findings show significant impacts of airport service quality on brand trust. Increased brand trust positively influences airport brand image and advocacy. Conclusion: The study emphasizes the aviation industry's potential to boost brand trust through improved airport service quality via users' interactions. Service quality is critical factors in building brand trust. The findings emphasize the critical role of service quality in fostering brand trust. It underscores the importance of user's satisfaction with service quality in fostering brand trust which can lead to brand image and brand advocacy. The aviation industry should formulate policies and strategies to enhance brand trust improved service quality, thereby improving brand image and brand advocacy.

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

The Effects of Unruly Passenger Behavior on SNS Sharing Intentions: Focusing on Foreign Passengers (기내난동이 탑승객의 SNS 공유의도에 미치는 영향: 외국인 승객을 대상으로)

  • Ri-Hyun Shin;Kee-Woong Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.20-28
    • /
    • 2024
  • The purpose of this study is to investigate the impact of negative emotions on the intention to share negative experiences caused by unruly passengers on flights. 163 questionnaires were collected and an SEM model was used to measure the relationship between passengers' negative emotions and sharing intentions. We empirically analyzed the impact of unruly passenger behavior on social media sharing intention through negative emotions, airline trust, and satisfaction with service recovery. Theoretically, we established a clear causal relationship between these variables. The results of this study shed light on the importance of developing a sustainable service strategy for passengers by analyzing the impact of negative emotions and sharing intentions. Based on our findings, we recognized that airlines should respond to disruptive behavior while understanding the negative emotional feelings of surrounding passengers. Therefore, this study strongly recommends that airlines should respond appropriately to in-flight disruptive behavior and ensure that passengers' negative emotions do not damage the overall reputation and image of the airline.

A Study on Improvement γ-Reθt Model for Hypersonic Boundary Layer Analysis (극 초음속 경계층 해석을 위한 γ-Reθt모델 개선 연구)

  • Kang, Sunoh;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Since boundary layer transition has a significant impact on the aero-thermodynamic performance of hypersonic flight vehicles, capability of accurate prediction of transition location is essential for design and performance analysis. In this study, γ-Reθt model is improved to predict transition of hypersonic boundary layers and validated. A coefficient in the production term of the intermittency transport equation that affects the transition onset location is constructed and applied as a function of Mach number, wall temperature, and freestream stagnation temperature based on the similarity numerical solution of compressible boundary layer. To take into account a Mach number dependency of transition onset momentum thickness Reynolds number and transition length, additional correlation equations are determined as function of Mach number and applied to Reθc and Flength correlations of the baseline model. The suggested model is implemented to a commercial CFD code in consideration of practical use. Analysis of hypersonic flat plate and circular cone boundary layers is carried out by using the model for validation purpose. An improvement of prediction capability with respect to variation of Mach number and unit Reynolds number is identified from the comparison with experimental data.

Study on Power Analysis and Test Verification for STSAT-2 Solar Array (과학기술위성 2호 태양전지 배열기의 전력 성능 분석 및 시험 검증 연구)

  • Park, Je-Hong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.507-517
    • /
    • 2010
  • The KOREAN AIR - R&D Center has developed a solar array for STSAT-2 Flight Model, SaTReC-KAIST, using a fully localized technology and has verified the performance through a launch vibration test, orbit environment test and electrical performance test. The solar array will be launched at NARO Space Center by KSLV-I which is the first Korean launch vehicle, in May 2010. In this paper, a current-voltage curve that shows the power characteristics of solar arrays was derived by applying elements that affects the power performance of STSAT-2's solar arrays to the solar cell equivalent models. The result was compared to LAPSS test results, and accuracy of the solar cell equivalent model and the power performance simulation has been analyzed.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

Analysis of Factors Affecting Radiation Knowledge among Aircrew (항공 승무원의 방사선 지식에 영향을 미치는 요인 분석)

  • Shin, Hyeongho;Park, Sangshin
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.96-102
    • /
    • 2020
  • Objectives: This study identified factors impacting radiation knowledge among aircrew, who are affected by cosmic radiation exposure due to their occupational environment. Methods: In September 2019 we conducted an online survey of aircrew through a Google link. We evaluated the level of radiation knowledge using a ten-item (10 points) questionnaire. The following exploratory variables were evaluated in relationship with the level of radiation knowledge using univariable linear regression models: sex, age, duration of employment, position level, company, marriage, education level, personal/family history of disease, and the number of times acquiring information on radiation through various channels (internet searching, watching television, reading newspaper, conversation about radiation with aircrew/non-aircrew, in-house training). With a p of 0.2 in univariable models, we built a multivariable linear regression model using a stepwise selection method. Results: The average radiation knowledge score of the 356 respondents was 7.22. Univariable linear regression analysis showed that radiation knowledge of the aircrew was associated with their company, position level, age, and number of conversations with other aircrew members. Our multivariable model showed that the radiation knowledge level of aircrew decreased as they had more conversations about radiation with other aircrew members and as their age increased. Conclusions: Korean air crew showed a lower level of radiation knowledge as their age and the number of conversations with colleagues increased. The study suggests that more education is needed in order for aircrew to gain accurate radiation knowledge.

Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics (능동 탭 로터 모델링 및 BVI 소음 저감 특성 해석)

  • Kim, Do-Hyung;Kang, Hee Jung;Wie, Seong-Yong;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.855-864
    • /
    • 2013
  • Active tab is one of the promising technology for the BVI (blade-vortex interaction) noise reduction, and analysis of noise reduction performance is very important phase of the technology development. For the purpose of analysing the performance of noise reduction using active tab, CAMRAD II model for a model-scale rotor system was constructed utilizing structural design result and airfoil aerodynamic data generated by CFD (computational fluid dynamics) calculation. HHC strategy was applied to descent flight condition and air-load was calculated by CAMRAD II then variations of BVI noise was calculated by in-house program. Calculation result with respect to tab length and control phase changes showed BVI noise could be reduced by -3.3dB.