• Title/Summary/Keyword: Flight Model

Search Result 1,074, Processing Time 0.027 seconds

Performance Test of Paylad Data Receiving Equipment for STSAT-2 (과학기술위성 2호 탑재체데이터 수신시스템의 성능 시험)

  • Lee, Jong-Ju;Seo, In-Ho;Lee, Chol;Oh, Chi-Wook;Kim, Kyung-Hee;Park, Sung-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.347-352
    • /
    • 2007
  • This paper describes the design and implementation of PFM(Proto Flight Model, PFM) of DRE(Data Receiving Equipment, DRE) for Science and Technology Satellite 2(STSAT-2) and the results of integration performance test. DRE components are X-band receiver, DCE(Data Combine Equipment, DCE) and RAC(Receiving and Archiving Computer, RAC). DCE consists of I&Q data combiner and ECL signal distributor. RAC consists of DRC(Data Receiving Card) and ST2RAS(STSAT-2 Receiving and Archinving Software). X-band receiver receives 10Mbps QPSK I, Q satellite data and sends the data to DCE. DRC stores the I&Q combine data from DCE to RAID. The pre-processing program sorts and stores to satellite status data and payload data. The performance of DRE in the functional and space environments test satisfies the requirements of STSAT-2.

Estimation of Domestic Aircraft Fuel Consumption and Improved Accuracy (국내선 항공기 연료소모량 추정및 정확도 향상)

  • HyeJin Hong;JiHun Choi;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.649-657
    • /
    • 2023
  • ICAO adopted the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) at the 39th General Assembly in 2016, and 115 countries, including South Korea, expressed their intention to participate in CORSIA as of January 1, 2023. Since carbon generated in the aviation industry is mainly caused by greenhouse gases emitted from aircraft engines, fuel consumption must be reduced to reduce carbon emissions. Prior research, such as simulation, is essential to predict the effectiveness of each plan and to make decisions about its implementation. High-quality data is needed to derive accurate results, but it has been difficult to secure actual fuel consumption data, as they are considered to be classified airline data. Therefore, in this paper, after establishing a model that estimates fuel consumption based on actual fuel consumption data, the model is to be advanced to improve its accuracy.

Estimated Analysis for Runway Occupancy Time Improvement (활주로 점유 시간 개선의 효과성 예측 분석)

  • GwangHoon Park;GumSeock Kang;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.666-673
    • /
    • 2023
  • The runway occupancy time of landing aircraft is an important factor in determining runway capacity. The purpose of this study is to suggest improvement measures for runway occupancy time to improve the operation of existing airports. In order to derive improvement measures, a comparative analysis was conducted on the effectiveness of improvement using aircraft operation status data for specific days at the case airport. The FAA REDIM model was used to analyze the improvement plan, and the improvement application function of the model was used to confirm the effect of improving runway capacity by adding a rapid escape taxiway to an airport without a rapid escape taxiway. This study's approach can be applied to the derivation of runway improvement measures and preliminary prediction of effectiveness, and it presents cases that can be applied to future airport construction projects or airport improvement projects.

Study of the Flush Air Data Sensing System for Subsonic and Supersonic Flows (아음속 및 초음속 유동의 플러시 대기자료 측정장치 연구)

  • Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.831-840
    • /
    • 2019
  • Flush Air Data Sensing system (FADS) estimates air data states using pressure data measured at the surface of flight vehicles. The FADS system does not require intrusive probes, so it is suitable for high performance aircrafts, stealth vehicles, and hypersonic flight vehicles. In this study, calibration procedures and solution algorithms of the FADS for a sphere-cone shape vehicle are presented for the prediction of air data from subsonic to supersonic flights. Five flush pressure ports are arranged on the surface of nose section in order to measure surface pressure data. The algorithm selects the concept of separation for the prediction of flow angles and the prediction of pressure related variables, and it uses the pressure model which combines the potential flow solution for a subsonic flow with the modified Newtonian flow theory for a hypersonic flow. The CFD code which solves Euler equations is developed and used for the construction of calibration pressure data in the Mach number range of 0.5~3.0. Tests are conducted with various flight conditions for flight Mach numbers in the range of 0.6~3.0 and flow angles in the range of -10°~+10°. Air data such as angle of attack, angle of sideslip, Mach number, and freestream static pressure are predicted and their accuracies are analyzed by comparing predicted data with reference data.

A Comparison Study of College Student Pilots' Learning Styles in Flight Training School: applying Kolb's Learning Style Model (국내·외 학생조종사들의 비행훈련 학습양식 비교 연구: Kolb 학습양식 모델을 적용하여)

  • Hwang, Jae-Kab;Lee, Gun-Young;Yoon, Han-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.197-207
    • /
    • 2021
  • According to the analysis of Kolb's learning style, Korean university student pilots interpret and attach meaning to themselves. Moreover, as the school year progresses, they enter the flight-training course with a 100 % diverger style, which is a variety of thoughts and imaginative learning styles. As the school year progresses, some changes occur with accommodator (11.1%) and assimilator (15.9%) styles. On the other hand, most students remain as the diverger style (71.4%). In the case of U.S. student pilots, most in first-year are assimilator (35.5%) and converger (24.3%) styles, and the proportion of the converger style increases as the senior year is approached. In the first grade, most Chinese student pilots are assimilators (41.5%) and convergers (28.4%), but in the higher grade, the proportion of assimilators and convergers decrease, and the proportion of diverger styles increases dramatically. In the fourth grade, the accommodator was similar to the first grade, but the converger style continued to decrease (41.5% in the first grade and 27.0% in the fourth grade).

Verification of Entertainment Utilization of UAS FC Data Using Machine Learning (머신러닝 기법을 이용한 무인항공기의 FC 데이터의 엔터테인먼트 드론 활용 검증)

  • Lee, Jae-Yong;Lee, Kwang-Jae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • Recently, drones are rapidly becoming common and expanding. There is a great need for diversity in whether drone flight data can be used as entertainment technology analysis data. In particular, it is necessary to check whether it is possible to analyze and utilize the flight and operation process of entertainment drones, which are developing through autonomous and intelligent methods, through data analysis and machine learning. In this paper, it was confirmed whether it can be used as a machine learning technology by using FC data in the evaluation of drones for entertainment. As a result, FC data from DJI and Parrot such as Mavic2 and Anafi were unable to analyze machine learning for entertainment. It is because data is collected at intervals of 0.1 second or more, so that it is impossible to find correlation with other data with GCS. On the other hand, it was found that machine learning technologies can be applied in the case of Fixhawk, which used an ARM processor and operates with the Nuttx OS. In the future, it is necessary to develop technologies capable of analyzing the characteristics of entertainment by dividing fixed-wing and rotary-wing flight information. For this, a model shoud be developed, and systematic big data collection and research should be conducted.

Effects of Nonverbal Communication of Flight Attendants on Customer Engagement and Brand Intimacy (항공사 승무원의 비언어 커뮤니케이션이 고객 인게이지먼트 및 브랜드 친밀감에 미치는 영향)

  • Yuna Choi;Namho Chung
    • Knowledge Management Research
    • /
    • v.24 no.2
    • /
    • pp.185-209
    • /
    • 2023
  • The air travel industry, which had shrunk with COVID-19, is gaining wings again. Accordingly, this study investigated whether non-verbal communication factors experienced through interaction with airline flight attendants for passengers who have traveled abroad within the past year through domestic airlines affect customer engagement and brand intimacy. A total of 285 samples were collected, and SPSS 28 and AMOS 26 programs were used to verify the reliability and validity of the research tool, the suitability of the model, and hypotheses. As a result of the empirical study analysis, it was confirmed that Paralanguage and Proxemics in non-verbal communication of flight attendants had a significant effect on customer engagement. Although it is different from the results of previous studies following changes in perspective after COVID-19, it once again confirmed the importance of airline crew communication in providing face-to-face services at the interface with passengers. In order to induce customer engagement, which is a new customer satisfaction management index. In addition, it was confirmed that customer engagement has a significant effect on brand intimacy. These results support the view that it is necessary to establish new customer management indicators of emotion and relationship marketing in the existing marketing centered on price reduction or securing loyalty. It was confirmed that interactions with flight attendants can contribute to customer engagement, and these results have important implications for those working in the air transportation industry.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Design of Electromechanical Actuator Capable of Simultaneous Control of Aerodynamic and Thrust Vector (공력과 추력방향 동시 제어가 가능한 전기식 구동장치 설계)

  • Lee, Ha Jun;Yoon, Kiwon;Song, In Seong;Park, Chang Kyoo;Lee, Young Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Electromechanical Actuator(EMA) for flight vehicles generally serves to control the fin deflection angle or the thrust vector angle. This paper deals with design and development of EMA for both aerodynamic control and thrust vector control. In this paper, a novel compact EMA is proposed that can simultaneously control both the tail fin and the jet vane with one actuator and detach the jet vane after vertical launch and rapid turn of the flight vehicle so as to increase efficiency during flying to target. To do this, we designed the EMA using a push-push link mechanism and derived a mathematical model. The mathematical model is validated by comparing simulation result and experimental data. The performance and reliability of the proposed EMA have been verified through performance test, environmental test and ground test. The proposed EMA is expected to be useful as an EMA for flight vehicles because of its simple and compact structure, as well as its performance and reliability.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.