• Title/Summary/Keyword: Flight Model

Search Result 1,074, Processing Time 0.031 seconds

Study on the Hovering Flight Performance of a Single Rotor on a River Surveillance Hexacopter (하천 측량용 헥사콥터의 단일로터에 대한 제자리 비행 성능 연구)

  • Jeong, Won-hoon;Kim, Bong-hwan;Min, Kyoung-moo;Chia, Allie;Park, Geun-woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an experimental device was fabricated to evaluate the hovering flight performance of a single rotor on a hexacopter used for river surveillance, and a thrust performance test was conducted. In addition, the 3D profile of the propeller was extracted by 3D scanning and CFD analysis was performed using ANSYS CFD 14.5 based on the extracted 3D model of the propeller. The aerodynamic characteristics were compared with the results of the performance tests and CFD analysis, and the vortex structure corresponding to each motor rotational speed in revolutions per minute (rpm) was identified. In the future, we plan to provide valuable data for multicopter propeller design and performance verification.

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.

Research for Drone Target Classification Method Using Deep Learning Techniques (딥 러닝 기법을 이용한 무인기 표적 분류 방법 연구)

  • Soonhyeon Choi;Incheol Cho;Junseok Hyun;Wonjun Choi;Sunghwan Sohn;Jung-Woo Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-196
    • /
    • 2024
  • Classification of drones and birds is challenging due to diverse flight patterns and limited data availability. Previous research has focused on identifying the flight patterns of unmanned aerial vehicles by emphasizing dynamic features such as speed and heading. However, this approach tends to neglect crucial spatial information, making accurate discrimination of unmanned aerial vehicle characteristics challenging. Furthermore, training methods for situations with imbalanced data among classes have not been proposed by traditional machine learning techniques. In this paper, we propose a data processing method that preserves angle information while maintaining positional details, enabling the deep learning model to better comprehend positional information of drones. Additionally, we introduce a training technique to address the issue of data imbalance.

Labeling strategy to improve neutron/gamma discrimination with organic scintillator

  • Ali Hachem;Yoann Moline;Gwenole Corre;Bassem Ouni;Mathieu Trocme;Aly Elayeb;Frederick Carrel
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4057-4065
    • /
    • 2023
  • Organic scintillators are widely used for neutron/gamma detection. Pulse shape discrimination algorithms have been commonly used to discriminate the detected radiations. These algorithms have several limits, in particular with plastic scintillator which has lower discrimination ability, compared to liquid scintillator. Recently, machine learning (ML) models have been explored to enhance discrimination performance. Nevertheless, obtaining an accurate ML model or evaluating any discrimination approach requires a reference neutron dataset. The preparation of this is challenging because neutron sources are also gamma-ray emitters. Therefore, this paper proposes a pipeline to prepare clean labeled neutron/gamma datasets acquired by an organic scintillator. The method is mainly based on a Time of Flight setup and Tail-to-Total integral ratio (TTTratio) discrimination algorithm. In the presented case, EJ276 plastic scintillator and 252Cf source were used to implement the acquisition chain. The results showed that this process can identify and remove mislabeled samples in the entire ToF spectrum, including those that contribute to peak values. Furthermore, the process cleans ToF dataset from pile-up events, which can significantly impact experimental results and the conclusions extracted from them.

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.

Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1459-1474
    • /
    • 2006
  • The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

State Estimation of Turbojet Engine Using Nonlinear Model (모델추정 기법을 이용한 터보제트엔진의 상태추정)

  • Kim, Jung-Hoe;Gim, Dong-Choon;Lee, Sang-Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.268-272
    • /
    • 2012
  • A propulsion controller for vehicles should be designed to overcome a sensor failure during a flight, and it is necessary to control the system properly at any circumstances. Therefore, the vehicles need to retain reliability on the sensor measurements by implementing extra sensors to replace the original control sensors in case of their failure. This paper presents the MIMO NARX model by simulation which substitutes measured values with estimated ones by the state estimation technique in case of a sensor failure in a turbojet engine. It is also presented that the NARX model can be adapted as an engine model in HILS equipments.

  • PDF